Presentation is loading. Please wait.

Presentation is loading. Please wait.

Recall Last Lecture Introduction to BJT Amplifier

Similar presentations


Presentation on theme: "Recall Last Lecture Introduction to BJT Amplifier"— Presentation transcript:

1 Recall Last Lecture Introduction to BJT Amplifier
Small signal or AC equivalent circuit parameters Have to calculate the DC collector current by performing DC analysis first Common Emitter-Emitter Grounded

2 STEPS OUTPUT SIDE Get the equivalent resistance at the output side, RO
Get the vo equation where vo = - gm vbeRO INPUT SIDE Calculate Ri Get vbe in terms of vi

3 TYPE 2: Emitter terminal connected with RE – normally ro =  in this type
New parameter: input resistance seen from the base, Rib = vb / ib VCC = 5 V RC = 5.6 k 250 k 75 k 0.5 k RE = 0.6 k β = 120 VBE = 0.7V VA =  Voltage Divider biasing: Change to Thevenin Equivalent RTH = 57.7 k VTH = V

4 Perform DC analysis to obtain the value of IC
BE loop: 57.7 IB IE – = 0 IE = 121 IB 57.7 IB (121IB) – = 0 IB = / ( ) = mA IC = βIB = mA Calculate the small-signal parameters r = 7.46 k , ro =  and gm = mA/V

5 0.5 k RTH = 57.7 k RC = 6 k 7.46 k RE = 0.6 k + vi - gmvbe vbe

6 STEPS OUTPUT SIDE Get the equivalent resistance at the output side, Ro
Get the vo equation where vo = - gmvbeRo INPUT SIDE Calculate Rib = r + (1+ ) RE Calculate Ri = Rib // RTH vbe in terms of vi

7 1. Rout = RC = 6 k 2. Equation of vo : vo = - gmvbeRC = vbe 3. Calculate Rib  Rib = = r + (1+ ) RE = [ 121(0.6) ] = k 4. Calculate Ri  RTH // Rib = k 5. vbe in terms of vi  KVL vi=vbe+ R E vbe rπ +gmvbe =vbe vbe =10.72 vbe

8 Equation of vo : vo = - gmvbeRC = - 96.36 vbe
vi=vbe+ R E vbe rπ +gmvbe =vbe vbe =10.72 vbe 5. Av vi = vo  open circuit voltage Av vi = vbe = vi = Av =  open circuit voltage gain 10.72

9 To find new voltage gain, vo/vs with input signal voltage source, vs
RS = 0.5 kΩ vS vo Ri = 33.53 k 6 k To find new voltage gain, vo/vs with input signal voltage source, vs 6. vi in terms of vs  use voltage divider: vi = [ Ri / ( Ri + Rs )] * vs = vs 7. vo = Avvi  because there is no load resistor vo = ( vs) vo/vs = -8.86

10 Voltage Divider biasing: Change to Thevenin Equivalent RTH = 10 k
VCC = 10 V RC = 2.3 k 20 k 5 k β = 125 VBE = 0.7V VA =  Bypass capacitor Voltage Divider biasing: Change to Thevenin Equivalent RTH = 10 k VTH = 5 V

11 Perform DC analysis to obtain the value of IC
β = 125 VBE = 0.7V VA =  Perform DC analysis to obtain the value of IC BE loop: 10 IB IE – 5 = 0 IE = 126 IB 10 IB (126 IB) – 5 = 0 IB = 4.3 / ( ) = mA IC = βIB = 0.84 mA Calculate the small-signal parameters r = 3.87 k , ro =  k and gm = 32.3 mA/V

12 r = 3.87 k , ro =  k and gm = 32.3 mA/V
1. Rout = RC = 2.3 k 2. Equation of vo : vo = - gmvbeRC = vbe 3. Calculate Rib  Rib = = r + (1+ ) RE = [ 126(5) ] = k 4. Calculate Ri  RTH // Rib = 9.8 k 5. vbe in terms of vi  KVL vi=vbe+ R E vbe rπ +gmvbe =vbe vbe = vbe

13 Equation of vo : vo = - gmvbeRC = - 74.29 vbe
vi= vbe 5. Av vi = vo  open circuit voltage Av vi = vbe = vi = Av =  open circuit voltage gain 163.79

14 To find new voltage gain, vo/vs with input signal voltage source, vs
2.3 k 9.8 k To find new voltage gain, vo/vs with input signal voltage source, vs 6. vi in terms of vs  in parallel vi = vs 7. vo = Avvi  because there is no load resistor vo = (vs) vo/vs =

15 TYPE 3: With Emitter Bypass Capacitor, CE
Circuit with Emitter Bypass Capacitor There may be times when the emitter resistor must be large for the purpose of DC design, but degrades the small-signal gain too severely. An emitter bypass capacitor can be used to effectively create a short circuit path during AC analysis hence avoiding the effect RE

16 CE becomes a short circuit path – bypass RE; hence similar to Type 1
gmvbe RTH vS vO RC vbe CE becomes a short circuit path – bypass RE; hence similar to Type 1

17 Voltage Divider biasing: Change to Thevenin Equivalent RTH = 10 k
VCC = 10 V RC = 2.3 k 20 k 5 k β = 125 VBE = 0.7V VA =  Bypass capacitor Voltage Divider biasing: Change to Thevenin Equivalent RTH = 10 k VTH = 5 V

18 Follow the steps 1. Ro = RC = 2.3 k
gmvbe RTH = 10 k vS vO RC = 2.3 k 3.87 k vbe Follow the steps 1. Ro = RC = 2.3 k 2. Equation of vo : vo = - (RC ) gmvbe= vbe 3. Calculate Ri  RTH||r = 2.79 k 4. vbe = vi

19 Equation of vo : vo = - 74.29 vbe
vbe = vi 5. Avvi = vo  open circuit voltage Av vi = vbe = vi Av =  open circuit voltage gain

20 To find new voltage gain, vo/vs with input signal voltage source, vs
2.278 k Ri = 2.79 k To find new voltage gain, vo/vs with input signal voltage source, vs 6. vi = vs  in parallel 7. vo = Avvi vo = (vs) vo/vs = CONFIGURATION GAIN With RE With bypass capacitor, CE

21 Voltage Divider biasing: Change to Thevenin Equivalent RTH = 10 k
EXAMPLE 2 – with ro VCC = 10 V RC = 2.3 k 20 k 5 k β = 125 VBE = 0.7V VA = 200 V Bypass capacitor Voltage Divider biasing: Change to Thevenin Equivalent RTH = 10 k VTH = 5 V

22 Perform DC analysis to obtain the value of IC
β = 125 VBE = 0.7V VA = 200 V Perform DC analysis to obtain the value of IC BE loop: 10 IB IE – 5 = 0 IE = 126 IB 10 IB (126 IB) – 5 = 0 IB = 4.3 / ( ) = mA IC = βIB = 0.84 mA Calculate the small-signal parameters r = 3.87 k , ro = 238 k and gm = 32.3 mA/V

23 Follow the steps 1. Rout = ro || RC = 2.278 k
gmvbe RTH = 10 k vS vO RC = 2.3 k 3.87 k vbe 238 k Follow the steps 1. Rout = ro || RC = k 2. Equation of vo : vo = - ( ro || RC ) gmvbe= vbe 3. Calculate Ri  RTH||r = 2.79 k 4. vbe = vi

24 Equation of vo : vo = - ( ro || RC ) gmvbe= -73.58 vbe
vbe = vi 5. Avvi = vo  open circuit voltage Av vi = vbe = vi Av =  open circuit voltage gain

25 To find new voltage gain, vo/vs with input signal voltage source, vs
2.278 k 2.79 k To find new voltage gain, vo/vs with input signal voltage source, vs 6. vi = vs  in parallel 7. vo = Avvi vo = (vs) vo/vs =


Download ppt "Recall Last Lecture Introduction to BJT Amplifier"

Similar presentations


Ads by Google