Download presentation
Presentation is loading. Please wait.
1
Geology 351 - Geomath Computer lab continued.
Evaluating mathematical models and calculating best-fit lines tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV Tom Wilson, Department of Geology and Geography
2
Continue our examination of familiar relationships
Objectives - Continue our examination of familiar relationships the exponential porosity depth relationship polynomial relationship between temperature and depth and general power law relationships such as the Gutenberg-Richter relation Introduce you to Homework Options 1 and 2 Answer questions about text problems 4.7 and 4.11 Group problems addressing slopes (derivatives) and wonder off on a few tangents! We’ll look at some familiar relationships that we’ve already worked with Tom Wilson, Department of Geology and Geography
3
One of the problem assignment options (see last page of lab guide) requires that you derive a relationship for specific frequency- magnitude data to estimate coefficients, and predict the frequency of occurrence of magnitude 6 and greater earthquakes in that area. (Remember Option 1 or 2 will be due next Thursday). Best Fit near mitakakaminaki Tom Wilson, Department of Geology and Geography
4
Returning to the Gutenberg-Richter Relation
we have the variables m vs N plotted, where N is plotted on an axis that is logarithmically scaled. -b is the slope and a is the intercept. Tom Wilson, Department of Geology and Geography
5
However, the relationship
indicates that log N will also vary in proportion to the log of the fault surface area. Hence, we could also There are different perspectives we can bring to bear on the analysis of our data. Tom Wilson, Department of Geology and Geography
6
Gutenberg Richter relation in Japan
Tom Wilson, Department of Geology and Geography
7
"Best fit" line In this fitting lab you’ll calculate the slope and intercept for the “best-fit” line In this example - Slope = b =-1.16 intercept = 6.06 Tom Wilson, Department of Geology and Geography
8
Recall that once we know the slope and intercept of the Gutenberg-Richter relationship, e.g. As in -
we can estimate the probability or frequency of occurrence of an earthquake with magnitude 7.0 or greater by substituting m=7 in the above equation. Doing this yields the prediction that in this region of Japan there will be 1 earthquake with magnitude 7 or greater every 115 years. We can use these relationships predictively. We may not witness a magnitude 7 earthquake, but there is some probability that one could occur Tom Wilson, Department of Geology and Geography
9
There’s about a one in a hundred chance of having a magnitude 7 or greater earthquake in any given year, but over a 115 year time period the odds are close to 1 that a magnitude 7 earthquake will occur in this area. Tom Wilson, Department of Geology and Geography
10
In this case, the historical record bears out our prediction
Historical activity in the surrounding area over the past 400 years reveals the presence of 3 earthquakes with magnitude 7 and greater in this region in good agreement with the predictions from the Gutenberg-Richter relation. Tom Wilson, Department of Geology and Geography
11
Another way to look at this relationship is to say that it states that the number of breaks (N) is inversely proportional to fragment size (r). Power law fragmentation relationships have long been recognized in geologic applications. Tom Wilson, Department of Geology and Geography
12
Fractal behavior Tom Wilson, Department of Geology and Geography
13
Relationship described by power laws
Box counting is a method used to determine the fractal dimension. The process begins by dividing an area into a few large boxes or square subdivisions and then counting the number of boxes that contain parts of the pattern. One then decreases the box size and then counts again. The process is repeated for successively smaller and smaller boxes and the results are plotted in a logN vs logr or log of number of boxes on a side as shown above. The slope of that line is the fractal dimension. Tom Wilson, Department of Geology and Geography
14
Where else does line fitting come in handy? Basic pump test data
Original data showing drawdown during pumping and recovery after pumping ceased. Recovery phase data after transformation, which includes a log transformation of the observation times. Tom Wilson, Department of Geology and Geography
15
A pilot carbon sequestration site here in the Appalachians
Tom Wilson, Department of Geology and Geography
16
Tom Wilson, Department of Geology and Geography
17
Residual track relative to the regression line for a horizontal well
Tom Wilson, Department of Geology and Geography
18
Some due dates to put on the calendar
Text problems 4.7 and 4.10 are due next Tuesday. Computer lab – Estimating coefficients of various mathematical relationships in geology will be due next Thursday, March 14. continue reading Chapter 8 – Differential Calculus Tom Wilson, Department of Geology and Geography
19
Return to the computer lab
Estimating the coefficients of various Mathematical relationships in Geology Tom Wilson, Department of Geology and Geography
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.