Download presentation
Presentation is loading. Please wait.
1
Random WALK, BROWNIAN MOTION and SDEs
Continuationβ¦
2
Stochastic Differential Equations
ODE: deterministic solution is a function SDE: probabilistic solution is a stochastic process (has different realizations or sample paths)
3
Stochastic Differential Equations
Suppose we have an SDE ππ₯=π π‘,π₯ ππ‘+π π‘,π₯ π π΅ π‘ or simply, ππ₯=πππ‘+ππ π΅ π‘ This DE is written in differential form (not in derivative form like ODEs) because Brownian motion is continuous but NOT differentiable.
4
Stochastic Differential Equations
Suppose we have an SDE ππ₯=π π‘,π₯ ππ‘+π π‘,π₯ π π΅ π‘ Remark: π
π© π is called white noise.
5
Stochastic Differential Equations
Suppose we have an SDE ππ₯=π π‘,π₯ ππ‘+π π‘,π₯ π π΅ π‘ Remark: This also means π
π ~ π΅ ππ
π, π π π
π πππ‘ is the mean change ππ π΅ π‘ is the error π 2 ππ‘ is the variance of the error
6
Stochastic Differential Equations
Suppose we have an SDE ππ₯=π π‘,π₯ ππ‘+π π‘,π₯ π π΅ π‘ This SDE is equivalent to the integral equation π₯ π‘ =π₯ π‘ π π ,π₯ ππ + 0 π‘ π π ,π₯ π π΅ π
7
Stochastic Differential Equations
Suppose we have an SDE ππ₯=π π‘,π₯ ππ‘+π π‘,π₯ π π΅ π‘ This SDE is equivalent to the integral equation π₯ π‘ =π₯ π‘ π π ,π₯ ππ + π π π π,π π
π© π The integral in red font is called an Ito integral.
8
Stochastic Differential Equations
Let π= π‘ 0 < π‘ 1 <β¦< π‘ πβ1 < π‘ π =π be a grid of points on the interval [π,π]. The Riemann integral is defined as a limit π π π π‘ ππ‘ = lim Ξ π‘ π β0 π=1 π π( π‘ π ) Ξ π‘ π where Ξ π‘ π = π‘ π β π‘ πβ1 and π‘ πβ1 β€ π‘ π β€ π‘ π
9
Stochastic Differential Equations
Let π= π‘ 0 < π‘ 1 <β¦< π‘ πβ1 < π‘ π =π be a grid of points on the interval [π,π]. The Ito integral is defined as a limit π π π π‘ π π΅ π‘ = lim Ξ π‘ π β0 π=1 π π( π‘ πβ1 ) Ξ π΅ π‘ π where Ξ π΅ π‘ π = π΅ π‘ π β π΅ π‘ πβ1 .
10
Kiyosi Ito
11
Stochastic Differential Equations
Example: ππ₯=πππ‘+ππ π΅ π‘ where π,π are constants π₯ 0 =π₯ 0 If π=0, we have the ODE ππ₯ ππ‘ =π with solution π₯ π‘ = π₯ 0 +ππ‘.
12
Stochastic Differential Equations
Example: ππ₯=πππ‘+ππ π΅ π‘ where π,π are constants π₯ 0 =π₯ 0 If π can be any real number, we integrate both sides 0 π‘ ππ₯ = 0 π‘ πππ + 0 π‘ ππ π΅ π .
13
Stochastic Differential Equations
Example: 0 π‘ ππ₯ = 0 π‘ πππ + 0 π‘ ππ π΅ π π₯ π‘ βπ₯ 0 =ππ‘+π π΅ π‘ The solution is the stochastic process: π₯ π‘ = π₯ 0 +ππ‘+π π΅ π‘
14
Stochastic Differential Equations
Example: The term ππ‘ is the drift The term π π΅ π‘ is the diffusion of Brownian motion
15
Stochastic Differential Equations
Solving SDEs analytically: we can use the Ito formula (Itoβs lemma). This is an analogue to the chain rule in conventional calculus. If π₯=β(π‘,π¦) then ππ₯= πβ ππ‘ ππ‘+ πβ ππ¦ ππ¦+ 1 2 π 2 β π π¦ 2 ππ¦ππ¦
16
Stochastic Differential Equations
We also use the following identities: ππ‘ ππ‘=0 ππ‘ π π΅ π‘ =π π΅ π‘ ππ‘=0 π π΅ π‘ π π΅ π‘ =ππ‘ Γ ππ‘ π π΅ π‘ ππ‘ 0 0 π π΅ π‘ 0 ππ‘
17
Stochastic Differential Equations
Remark: Recall Taylor Series expansion of β(π₯): β π₯ =β π₯ + β β² π₯ π₯β π₯ ββ²β² π₯ π₯β π₯ 2 +β¦
18
Stochastic Differential Equations
Remark: β π₯ ββ π₯ = β β² π₯ π₯β π₯ ββ²β² π₯ π₯β π₯ 2 +β¦ Replace: βπ₯=π₯β π₯ ββ(π₯)=β π₯ ββ π₯
19
Stochastic Differential Equations
Remark: ββ(π₯)= β β² π₯ βπ₯+ 1 2 ββ²β² π₯ βπ₯ 2 +β¦ Replace the difference by differential, πβ(π₯)= β β² π₯ ππ₯+ 1 2 ββ²β² π₯ ππ₯ 2 +β¦
20
Stochastic Differential Equations
Remark: In conventional calculus, we compute for differential by πβ(π₯)= β β² π₯ ππ₯ where higher terms are negligible for small changes in π₯.
21
Stochastic Differential Equations
Remark: In stochastic calculus, we need to keep up to second-order terms: πβ(π₯)= β β² π₯ ππ₯+ 1 2 ββ²β² π₯ ππ₯ 2 This is exact, i.e., third-order and higher-order terms are zero.
22
Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β(π‘,π¦) (in two- variables): β π‘,π¦ =β π‘ , π¦ + β π‘ π‘ , π¦ π‘β π‘ + β π¦ π‘ , π¦ π¦β π¦ β π‘π‘ π‘ , π¦ π‘β π‘ 2 + 2β π‘π¦ π‘ , π¦ π‘β π‘ π¦β π¦ + β π¦π¦ π‘ , π¦ π¦β π¦ 2 β π‘π‘ π‘ , π¦ π‘β π‘ 2 + 2β π‘π¦ π‘ , π¦ π‘β π‘ π¦β π¦ + β π¦π¦ π‘ , π¦ π¦β π¦ 2 +β¦
23
Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β(π‘,π¦) (in two- variables): πβ π‘,π¦ = β π‘ π‘ , π¦ ππ‘+ β π¦ π‘ , π¦ ππ¦ β π‘π‘ π‘ , π¦ ππ‘ 2 + 2β π‘π¦ π‘ , π¦ ππ‘ππ¦+ β π¦π¦ π‘ , π¦ ππ¦ 2 +β¦
24
Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β(π‘,π¦) (in two- variables): πβ π‘,π¦ = β π‘ π‘ , π¦ ππ‘+ β π¦ π‘ , π¦ ππ¦ β π‘π¦ π‘ , π¦ ππ‘ππ¦+ β π¦π¦ π‘ , π¦ ππ¦ 2
25
Stochastic Differential Equations
Derivation of the Ito formula: Note that π¦ is a function of π‘ and π΅ π‘ , and ππ¦ contains ππ‘ and π π΅ π‘ . 2β π‘π¦ π‘ , π¦ ππ‘ππ¦=0
26
Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β(π‘,π¦) (in two- variables): πβ π‘,π¦ = β π‘ π‘ , π¦ ππ‘+ β π¦ π‘ , π¦ ππ¦+ 1 2 β π¦π¦ π‘ , π¦ ππ¦ 2 Hence, if π₯=β(π‘,π¦) then ππ₯= πβ ππ‘ ππ‘+ πβ ππ¦ ππ¦+ 1 2 π 2 β π π¦ 2 ππ¦ππ¦
27
Stochastic Differential Equations
Why π
π© π π
π© π =π
π? 0= π‘ 0 < π‘ 1 <β¦< π‘ πβ1 < π‘ π =π‘ 0 π‘ π π΅ π 2 = lim Ξ π‘ π β0 π=1 π Ξ π΅ π‘ π 2 lim Ξ π‘ π β0 π=1 π Ξ π΅ π‘ π 2 = lim πββ π=1 π Ξ π΅ π‘ π 2
28
Stochastic Differential Equations
Why π
π© π π
π© π =π
π? WLoG, suppose Ξ π‘ π =Ξ π‘ πβ1 =β¦=Ξ π‘ 1 . It means π‘=πΞ π‘ 1 . π‘ πΞ π‘ 1 π=1 π Ξ π΅ π‘ π 2 where Ξ π‘ 1 β0, πββ. π‘ 1 π π=1 π Ξ π΅ π‘ π Ξ π‘ 1 2
29
Stochastic Differential Equations
Why π
π© π π
π© π =π
π? Recall: Ξ π΅ π‘ π Ξ π‘ π ~π(0,1) Remark: Chi-squared distribution with k degrees of freedom ( π 2 (π)) is the distribution of a sum of the squares of k independent standard normal random variables Let π= π=1 π Ξ π΅ π‘ π Ξ π‘ ~ π 2 (π) or π π = Ξ π΅ π‘ π Ξ π‘ ~ π 2 (1), π=1,2,β¦,π
30
Stochastic Differential Equations
Why π
π© π π
π© π =π
π? π‘ 1 π π=1 π Ξ π΅ π‘ π Ξ π‘ 1 2 =π‘ π 1 + π 2 +β¦+ π π π Remark: By the law of large numbers (πββ), the sample mean of n i.i.d. chi-squared random variables of degree k is k. Since π π ~ π 2 (1) then π 1 + π 2 +β¦+ π π π =1.
31
Stochastic Differential Equations
Why π
π© π π
π© π =π
π? π‘ 1 π π=1 π Ξ π΅ π‘ π Ξ π‘ 1 2 =π‘ π 1 + π 2 +β¦+ π π π =π‘ Therefore 0 π‘ π π΅ π 2 = lim Ξ π‘ π β0 π=1 π Ξ π΅ π‘ π 2 =π‘. Which means π π΅ π 2 =ππ‘.
32
Stochastic Differential Equations
Why π
ππ
π=π? WLoG, suppose Ξ π‘ π =Ξ π‘ πβ1 =β¦=Ξ π‘ 1 . It means π‘=πΞ π‘ π‘ ππ 2 = lim Ξ π‘ π β0 π=1 π Ξ π‘ π 2 = lim Ξ π‘ 1 β0 π=1 π Ξ π‘ 1 2 = lim Ξ π‘ 1 β0 π Ξ π‘ 1 2 Since t is constant, lim Ξ π‘ 1 β0 π Ξ π‘ 1 2 = lim Ξ π‘ 1 β0 π‘Ξ π‘ 1 =π‘ lim Ξ π‘ 1 β0 Ξ π‘ 1 =0
33
Stochastic Differential Equations
Why π
π© π π
π=π? WLoG, suppose Ξ π‘ π =Ξ π‘ πβ1 =β¦=Ξ π‘ 1 . It means π‘=πΞ π‘ π‘ ππ΅ π ππ = lim Ξ π‘ π β0 π=1 π Ξ π΅ π‘ π Ξ π‘ π = lim Ξ π‘ 1 β0 π=1 π Ξ π΅ π‘ 1 Ξ π‘ 1 = lim Ξ π‘ 1 β0 πΞ π΅ π‘ 1 Ξ π‘ 1 Since t is constant and Ξ π΅ π‘ 1 = Ξ π‘ 1 π(0,1), lim Ξ π‘ 1 β0 πΞ π΅ π‘ 1 Ξ π‘ 1 = π‘ lim Ξ π‘ 1 β0 Ξ π΅ π‘ 1 =0
34
Stochastic Differential Equations
We can guess a solution and use Itoβs Lemma to verify that the solution satisfies the SDE If π₯=β(π‘,π¦) then ππ₯= πβ ππ‘ ππ‘+ πβ ππ¦ ππ¦+ 1 2 π 2 β π π¦ 2 ππ¦ππ¦
35
Stochastic Differential Equations
Example 1: Solve ππ₯=ππ‘+2 π΅ π‘ π π΅ π‘ The solution is π₯(π‘)= π΅ π‘ 2 .
36
Stochastic Differential Equations
Example 1: Solve ππ₯=ππ‘+2 π΅ π‘ π π΅ π‘ Let our guess be π₯=β π‘,π¦ = π΅ π‘ 2 = π¦ 2 where π¦= π΅ π‘ . Ito formula: ππ₯= πβ ππ‘ ππ‘+ πβ ππ¦ ππ¦+ 1 2 π 2 β π π¦ 2 ππ¦ππ¦ ππ₯=0ππ‘+2π¦ππ¦ ππ¦ππ¦
37
Stochastic Differential Equations
Example 1: ππ₯=0ππ‘+2π¦ππ¦ ππ¦ππ¦ ππ₯=2 π΅ π‘ π π΅ π‘ +π π΅ π‘ π π΅ π‘ π
π=π π© π π
π© π +π
π Hence, the solution is π₯(π‘)= π΅ π‘ 2 .
38
Stochastic Differential Equations
Example 2: Solve ππ₯=ππ₯ππ‘+ππ₯π π΅ π‘ where π,π constant Initial condition: π₯ 0 = π₯ 0 The solution is the geometric Brownian motion π₯ π‘ = π₯ 0 exp πβ 1 2 π 2 π‘+π π΅ π‘ . Note: geometric Brownian motion is the underlying model for the BlackβScholes equations that are used to price financial derivatives
39
Stochastic Differential Equations
Example 2: Solve ππ₯=ππ₯ππ‘+ππ₯π π΅ π‘ Let our guess be π₯=β π‘,π¦ = π₯ 0 π π¦ where π¦= πβ 1 2 π 2 π‘+π π΅ π‘ . Ito formula: ππ₯= πβ ππ‘ ππ‘+ πβ ππ¦ ππ¦+ 1 2 π 2 β π π¦ 2 ππ¦ππ¦ ππ₯=0ππ‘+ π₯ 0 π π¦ ππ¦+ 1 2 π₯ 0 π π¦ ππ¦ππ¦
40
Stochastic Differential Equations
Example 2: ππ₯=0ππ‘+ π₯ 0 π π¦ ππ¦+ 1 2 π₯ 0 π π¦ ππ¦ππ¦ Note: ππ¦= πβ 1 2 π 2 ππ‘+π ππ΅ π‘ , which means ππ¦ππ¦= π 2 ππ‘ ππ₯= π₯ 0 π π¦ πβ 1 2 π 2 ππ‘+π ππ΅ π‘ π₯ 0 π π¦ π 2 ππ‘
41
Stochastic Differential Equations
Example 2: ππ₯= π₯ 0 π π¦ πππ‘β π₯ 0 π π¦ 1 2 π 2 ππ‘+ π₯ 0 π π¦ π ππ΅ π‘ π₯ 0 π π¦ π 2 ππ‘ ππ₯= π₯ 0 π π¦ πππ‘+ π₯ 0 π π¦ π ππ΅ π‘ Since π₯= π₯ 0 π π¦ , π
π=πππ
π+ππ π
π© π Hence, the solution is π₯ π‘ = π₯ 0 exp πβ 1 2 π 2 π‘+π π΅ π‘ .
42
Stochastic Differential Equations
Example 3: Solve ππ₯= π΅ π‘ ππ‘+π‘π π΅ π‘ Initial condition: π₯ 0 =π The solution is π₯ π‘ =π‘ π΅ π‘ +π.
43
Stochastic Differential Equations
Example 4: Solve ππ₯=(1β π΅ π‘ 2 ) π β2π₯ ππ‘+2 π΅ π‘ π βπ₯ π π΅ π‘ Initial condition: π₯ 0 =0 The solution is π₯ π‘ = ln (1+ π΅ π‘ 2 ) .
44
Stochastic Differential Equations
Example 5: Solve ππ₯= π΅ π‘ ππ‘+ 3 9 π₯ 2 π π΅ π‘ Initial condition: π₯ 0 =0 The solution is π₯ π‘ = 1 3 π΅ π‘ 3 .
45
Stochastic Differential Equations
Example 6: Solve ππ₯= β1 2 π₯ππ‘+ 1β π₯ 2 π π΅ π‘ Initial condition: π₯ 0 =0 The solution is π₯ π‘ = sin π΅ π‘ .
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.