Presentation is loading. Please wait.

Presentation is loading. Please wait.

Random WALK, BROWNIAN MOTION and SDEs

Similar presentations


Presentation on theme: "Random WALK, BROWNIAN MOTION and SDEs"β€” Presentation transcript:

1 Random WALK, BROWNIAN MOTION and SDEs
Continuation…

2 Stochastic Differential Equations
ODE: deterministic solution is a function SDE: probabilistic solution is a stochastic process (has different realizations or sample paths)

3 Stochastic Differential Equations
Suppose we have an SDE 𝑑π‘₯=𝑓 𝑑,π‘₯ 𝑑𝑑+𝑔 𝑑,π‘₯ 𝑑 𝐡 𝑑 or simply, 𝑑π‘₯=𝑓𝑑𝑑+𝑔𝑑 𝐡 𝑑 This DE is written in differential form (not in derivative form like ODEs) because Brownian motion is continuous but NOT differentiable.

4 Stochastic Differential Equations
Suppose we have an SDE 𝑑π‘₯=𝑓 𝑑,π‘₯ 𝑑𝑑+𝑔 𝑑,π‘₯ 𝑑 𝐡 𝑑 Remark: 𝒅 𝑩 𝒕 is called white noise.

5 Stochastic Differential Equations
Suppose we have an SDE 𝑑π‘₯=𝑓 𝑑,π‘₯ 𝑑𝑑+𝑔 𝑑,π‘₯ 𝑑 𝐡 𝑑 Remark: This also means 𝒅𝒙 ~ 𝑡 𝒇𝒅𝒕, π’ˆ 𝟐 𝒅𝒕 𝑓𝑑𝑑 is the mean change 𝑔𝑑 𝐡 𝑑 is the error 𝑔 2 𝑑𝑑 is the variance of the error

6 Stochastic Differential Equations
Suppose we have an SDE 𝑑π‘₯=𝑓 𝑑,π‘₯ 𝑑𝑑+𝑔 𝑑,π‘₯ 𝑑 𝐡 𝑑 This SDE is equivalent to the integral equation π‘₯ 𝑑 =π‘₯ 𝑑 𝑓 𝑠,π‘₯ 𝑑𝑠 + 0 𝑑 𝑔 𝑠,π‘₯ 𝑑 𝐡 𝑠

7 Stochastic Differential Equations
Suppose we have an SDE 𝑑π‘₯=𝑓 𝑑,π‘₯ 𝑑𝑑+𝑔 𝑑,π‘₯ 𝑑 𝐡 𝑑 This SDE is equivalent to the integral equation π‘₯ 𝑑 =π‘₯ 𝑑 𝑓 𝑠,π‘₯ 𝑑𝑠 + 𝟎 𝒕 π’ˆ 𝒔,𝒙 𝒅 𝑩 𝒔 The integral in red font is called an Ito integral.

8 Stochastic Differential Equations
Let π‘Ž= 𝑑 0 < 𝑑 1 <…< 𝑑 π‘›βˆ’1 < 𝑑 𝑛 =𝑏 be a grid of points on the interval [π‘Ž,𝑏]. The Riemann integral is defined as a limit π‘Ž 𝑏 𝑓 𝑑 𝑑𝑑 = lim Ξ” 𝑑 𝑖 β†’0 𝑖=1 𝑛 𝑓( 𝑑 𝑖 ) Ξ” 𝑑 𝑖 where Ξ” 𝑑 𝑖 = 𝑑 𝑖 βˆ’ 𝑑 π‘–βˆ’1 and 𝑑 π‘–βˆ’1 ≀ 𝑑 𝑖 ≀ 𝑑 𝑖

9 Stochastic Differential Equations
Let π‘Ž= 𝑑 0 < 𝑑 1 <…< 𝑑 π‘›βˆ’1 < 𝑑 𝑛 =𝑏 be a grid of points on the interval [π‘Ž,𝑏]. The Ito integral is defined as a limit π‘Ž 𝑏 𝑔 𝑑 𝑑 𝐡 𝑑 = lim Ξ” 𝑑 𝑖 β†’0 𝑖=1 𝑛 𝑔( 𝑑 π‘–βˆ’1 ) Ξ” 𝐡 𝑑 𝑖 where Ξ” 𝐡 𝑑 𝑖 = 𝐡 𝑑 𝑖 βˆ’ 𝐡 𝑑 π‘–βˆ’1 .

10 Kiyosi Ito

11 Stochastic Differential Equations
Example: 𝑑π‘₯=π‘Ÿπ‘‘π‘‘+πœŽπ‘‘ 𝐡 𝑑 where π‘Ÿ,𝜎 are constants π‘₯ 0 =π‘₯ 0 If 𝜎=0, we have the ODE 𝑑π‘₯ 𝑑𝑑 =π‘Ÿ with solution π‘₯ 𝑑 = π‘₯ 0 +π‘Ÿπ‘‘.

12 Stochastic Differential Equations
Example: 𝑑π‘₯=π‘Ÿπ‘‘π‘‘+πœŽπ‘‘ 𝐡 𝑑 where π‘Ÿ,𝜎 are constants π‘₯ 0 =π‘₯ 0 If 𝜎 can be any real number, we integrate both sides 0 𝑑 𝑑π‘₯ = 0 𝑑 π‘Ÿπ‘‘π‘  + 0 𝑑 πœŽπ‘‘ 𝐡 𝑠 .

13 Stochastic Differential Equations
Example: 0 𝑑 𝑑π‘₯ = 0 𝑑 π‘Ÿπ‘‘π‘  + 0 𝑑 πœŽπ‘‘ 𝐡 𝑠 π‘₯ 𝑑 βˆ’π‘₯ 0 =π‘Ÿπ‘‘+𝜎 𝐡 𝑑 The solution is the stochastic process: π‘₯ 𝑑 = π‘₯ 0 +π‘Ÿπ‘‘+𝜎 𝐡 𝑑

14 Stochastic Differential Equations
Example: The term π‘Ÿπ‘‘ is the drift The term 𝜎 𝐡 𝑑 is the diffusion of Brownian motion

15 Stochastic Differential Equations
Solving SDEs analytically: we can use the Ito formula (Ito’s lemma). This is an analogue to the chain rule in conventional calculus. If π‘₯=β„Ž(𝑑,𝑦) then 𝑑π‘₯= πœ•β„Ž πœ•π‘‘ 𝑑𝑑+ πœ•β„Ž πœ•π‘¦ 𝑑𝑦+ 1 2 πœ• 2 β„Ž πœ• 𝑦 2 𝑑𝑦𝑑𝑦

16 Stochastic Differential Equations
We also use the following identities: 𝑑𝑑 𝑑𝑑=0 𝑑𝑑 𝑑 𝐡 𝑑 =𝑑 𝐡 𝑑 𝑑𝑑=0 𝑑 𝐡 𝑑 𝑑 𝐡 𝑑 =𝑑𝑑 Γ— 𝑑𝑑 𝑑 𝐡 𝑑 𝑑𝑑 0 0 𝑑 𝐡 𝑑 0 𝑑𝑑

17 Stochastic Differential Equations
Remark: Recall Taylor Series expansion of β„Ž(π‘₯): β„Ž π‘₯ =β„Ž π‘₯ + β„Ž β€² π‘₯ π‘₯βˆ’ π‘₯ β„Žβ€²β€² π‘₯ π‘₯βˆ’ π‘₯ 2 +…

18 Stochastic Differential Equations
Remark: β„Ž π‘₯ βˆ’β„Ž π‘₯ = β„Ž β€² π‘₯ π‘₯βˆ’ π‘₯ β„Žβ€²β€² π‘₯ π‘₯βˆ’ π‘₯ 2 +… Replace: βˆ†π‘₯=π‘₯βˆ’ π‘₯ βˆ†β„Ž(π‘₯)=β„Ž π‘₯ βˆ’β„Ž π‘₯

19 Stochastic Differential Equations
Remark: βˆ†β„Ž(π‘₯)= β„Ž β€² π‘₯ βˆ†π‘₯+ 1 2 β„Žβ€²β€² π‘₯ βˆ†π‘₯ 2 +… Replace the difference by differential, π‘‘β„Ž(π‘₯)= β„Ž β€² π‘₯ 𝑑π‘₯+ 1 2 β„Žβ€²β€² π‘₯ 𝑑π‘₯ 2 +…

20 Stochastic Differential Equations
Remark: In conventional calculus, we compute for differential by π‘‘β„Ž(π‘₯)= β„Ž β€² π‘₯ 𝑑π‘₯ where higher terms are negligible for small changes in π‘₯.

21 Stochastic Differential Equations
Remark: In stochastic calculus, we need to keep up to second-order terms: π‘‘β„Ž(π‘₯)= β„Ž β€² π‘₯ 𝑑π‘₯+ 1 2 β„Žβ€²β€² π‘₯ 𝑑π‘₯ 2 This is exact, i.e., third-order and higher-order terms are zero.

22 Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β„Ž(𝑑,𝑦) (in two- variables): β„Ž 𝑑,𝑦 =β„Ž 𝑑 , 𝑦 + β„Ž 𝑑 𝑑 , 𝑦 π‘‘βˆ’ 𝑑 + β„Ž 𝑦 𝑑 , 𝑦 π‘¦βˆ’ 𝑦 β„Ž 𝑑𝑑 𝑑 , 𝑦 π‘‘βˆ’ 𝑑 2 + 2β„Ž 𝑑𝑦 𝑑 , 𝑦 π‘‘βˆ’ 𝑑 π‘¦βˆ’ 𝑦 + β„Ž 𝑦𝑦 𝑑 , 𝑦 π‘¦βˆ’ 𝑦 2 β„Ž 𝑑𝑑 𝑑 , 𝑦 π‘‘βˆ’ 𝑑 2 + 2β„Ž 𝑑𝑦 𝑑 , 𝑦 π‘‘βˆ’ 𝑑 π‘¦βˆ’ 𝑦 + β„Ž 𝑦𝑦 𝑑 , 𝑦 π‘¦βˆ’ 𝑦 2 +…

23 Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β„Ž(𝑑,𝑦) (in two- variables): π‘‘β„Ž 𝑑,𝑦 = β„Ž 𝑑 𝑑 , 𝑦 𝑑𝑑+ β„Ž 𝑦 𝑑 , 𝑦 𝑑𝑦 β„Ž 𝑑𝑑 𝑑 , 𝑦 𝑑𝑑 2 + 2β„Ž 𝑑𝑦 𝑑 , 𝑦 𝑑𝑑𝑑𝑦+ β„Ž 𝑦𝑦 𝑑 , 𝑦 𝑑𝑦 2 +…

24 Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β„Ž(𝑑,𝑦) (in two- variables): π‘‘β„Ž 𝑑,𝑦 = β„Ž 𝑑 𝑑 , 𝑦 𝑑𝑑+ β„Ž 𝑦 𝑑 , 𝑦 𝑑𝑦 β„Ž 𝑑𝑦 𝑑 , 𝑦 𝑑𝑑𝑑𝑦+ β„Ž 𝑦𝑦 𝑑 , 𝑦 𝑑𝑦 2

25 Stochastic Differential Equations
Derivation of the Ito formula: Note that 𝑦 is a function of 𝑑 and 𝐡 𝑑 , and 𝑑𝑦 contains 𝑑𝑑 and 𝑑 𝐡 𝑑 . 2β„Ž 𝑑𝑦 𝑑 , 𝑦 𝑑𝑑𝑑𝑦=0

26 Stochastic Differential Equations
Derivation of the Ito formula: Taylor series expansion of β„Ž(𝑑,𝑦) (in two- variables): π‘‘β„Ž 𝑑,𝑦 = β„Ž 𝑑 𝑑 , 𝑦 𝑑𝑑+ β„Ž 𝑦 𝑑 , 𝑦 𝑑𝑦+ 1 2 β„Ž 𝑦𝑦 𝑑 , 𝑦 𝑑𝑦 2 Hence, if π‘₯=β„Ž(𝑑,𝑦) then 𝑑π‘₯= πœ•β„Ž πœ•π‘‘ 𝑑𝑑+ πœ•β„Ž πœ•π‘¦ 𝑑𝑦+ 1 2 πœ• 2 β„Ž πœ• 𝑦 2 𝑑𝑦𝑑𝑦

27 Stochastic Differential Equations
Why 𝒅 𝑩 𝒕 𝒅 𝑩 𝒕 =𝒅𝒕? 0= 𝑑 0 < 𝑑 1 <…< 𝑑 π‘›βˆ’1 < 𝑑 𝑛 =𝑑 0 𝑑 𝑑 𝐡 𝑠 2 = lim Ξ” 𝑑 𝑖 β†’0 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 2 lim Ξ” 𝑑 𝑖 β†’0 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 2 = lim π‘›β†’βˆž 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 2

28 Stochastic Differential Equations
Why 𝒅 𝑩 𝒕 𝒅 𝑩 𝒕 =𝒅𝒕? WLoG, suppose Ξ” 𝑑 𝑛 =Ξ” 𝑑 π‘›βˆ’1 =…=Ξ” 𝑑 1 . It means 𝑑=𝑛Δ 𝑑 1 . 𝑑 𝑛Δ 𝑑 1 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 2 where Ξ” 𝑑 1 β†’0, π‘›β†’βˆž. 𝑑 1 𝑛 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 Ξ” 𝑑 1 2

29 Stochastic Differential Equations
Why 𝒅 𝑩 𝒕 𝒅 𝑩 𝒕 =𝒅𝒕? Recall: Ξ” 𝐡 𝑑 𝑖 Ξ” 𝑑 𝑖 ~𝑁(0,1) Remark: Chi-squared distribution with k degrees of freedom ( πœ’ 2 (π‘˜)) is the distribution of a sum of the squares of k independent standard normal random variables Let π‘Œ= 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 Ξ” 𝑑 ~ πœ’ 2 (𝑛) or π‘Œ 𝑖 = Ξ” 𝐡 𝑑 𝑖 Ξ” 𝑑 ~ πœ’ 2 (1), 𝑖=1,2,…,𝑛

30 Stochastic Differential Equations
Why 𝒅 𝑩 𝒕 𝒅 𝑩 𝒕 =𝒅𝒕? 𝑑 1 𝑛 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 Ξ” 𝑑 1 2 =𝑑 π‘Œ 1 + π‘Œ 2 +…+ π‘Œ 𝑛 𝑛 Remark: By the law of large numbers (π‘›β†’βˆž), the sample mean of n i.i.d. chi-squared random variables of degree k is k. Since π‘Œ 𝑖 ~ πœ’ 2 (1) then π‘Œ 1 + π‘Œ 2 +…+ π‘Œ 𝑛 𝑛 =1.

31 Stochastic Differential Equations
Why 𝒅 𝑩 𝒕 𝒅 𝑩 𝒕 =𝒅𝒕? 𝑑 1 𝑛 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 Ξ” 𝑑 1 2 =𝑑 π‘Œ 1 + π‘Œ 2 +…+ π‘Œ 𝑛 𝑛 =𝑑 Therefore 0 𝑑 𝑑 𝐡 𝑠 2 = lim Ξ” 𝑑 𝑖 β†’0 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 2 =𝑑. Which means 𝑑 𝐡 𝑠 2 =𝑑𝑑.

32 Stochastic Differential Equations
Why 𝒅𝒕𝒅𝒕=𝟎? WLoG, suppose Ξ” 𝑑 𝑛 =Ξ” 𝑑 π‘›βˆ’1 =…=Ξ” 𝑑 1 . It means 𝑑=𝑛Δ 𝑑 𝑑 𝑑𝑠 2 = lim Ξ” 𝑑 𝑖 β†’0 𝑖=1 𝑛 Ξ” 𝑑 𝑖 2 = lim Ξ” 𝑑 1 β†’0 𝑖=1 𝑛 Ξ” 𝑑 1 2 = lim Ξ” 𝑑 1 β†’0 𝑛 Ξ” 𝑑 1 2 Since t is constant, lim Ξ” 𝑑 1 β†’0 𝑛 Ξ” 𝑑 1 2 = lim Ξ” 𝑑 1 β†’0 𝑑Δ 𝑑 1 =𝑑 lim Ξ” 𝑑 1 β†’0 Ξ” 𝑑 1 =0

33 Stochastic Differential Equations
Why 𝒅 𝑩 𝒕 𝒅𝒕=𝟎? WLoG, suppose Ξ” 𝑑 𝑛 =Ξ” 𝑑 π‘›βˆ’1 =…=Ξ” 𝑑 1 . It means 𝑑=𝑛Δ 𝑑 𝑑 𝑑𝐡 𝑠 𝑑𝑠 = lim Ξ” 𝑑 𝑖 β†’0 𝑖=1 𝑛 Ξ” 𝐡 𝑑 𝑖 Ξ” 𝑑 𝑖 = lim Ξ” 𝑑 1 β†’0 𝑖=1 𝑛 Ξ” 𝐡 𝑑 1 Ξ” 𝑑 1 = lim Ξ” 𝑑 1 β†’0 𝑛Δ 𝐡 𝑑 1 Ξ” 𝑑 1 Since t is constant and Ξ” 𝐡 𝑑 1 = Ξ” 𝑑 1 𝑁(0,1), lim Ξ” 𝑑 1 β†’0 𝑛Δ 𝐡 𝑑 1 Ξ” 𝑑 1 = 𝑑 lim Ξ” 𝑑 1 β†’0 Ξ” 𝐡 𝑑 1 =0

34 Stochastic Differential Equations
We can guess a solution and use Ito’s Lemma to verify that the solution satisfies the SDE If π‘₯=β„Ž(𝑑,𝑦) then 𝑑π‘₯= πœ•β„Ž πœ•π‘‘ 𝑑𝑑+ πœ•β„Ž πœ•π‘¦ 𝑑𝑦+ 1 2 πœ• 2 β„Ž πœ• 𝑦 2 𝑑𝑦𝑑𝑦

35 Stochastic Differential Equations
Example 1: Solve 𝑑π‘₯=𝑑𝑑+2 𝐡 𝑑 𝑑 𝐡 𝑑 The solution is π‘₯(𝑑)= 𝐡 𝑑 2 .

36 Stochastic Differential Equations
Example 1: Solve 𝑑π‘₯=𝑑𝑑+2 𝐡 𝑑 𝑑 𝐡 𝑑 Let our guess be π‘₯=β„Ž 𝑑,𝑦 = 𝐡 𝑑 2 = 𝑦 2 where 𝑦= 𝐡 𝑑 . Ito formula: 𝑑π‘₯= πœ•β„Ž πœ•π‘‘ 𝑑𝑑+ πœ•β„Ž πœ•π‘¦ 𝑑𝑦+ 1 2 πœ• 2 β„Ž πœ• 𝑦 2 𝑑𝑦𝑑𝑦 𝑑π‘₯=0𝑑𝑑+2𝑦𝑑𝑦 𝑑𝑦𝑑𝑦

37 Stochastic Differential Equations
Example 1: 𝑑π‘₯=0𝑑𝑑+2𝑦𝑑𝑦 𝑑𝑦𝑑𝑦 𝑑π‘₯=2 𝐡 𝑑 𝑑 𝐡 𝑑 +𝑑 𝐡 𝑑 𝑑 𝐡 𝑑 𝒅𝒙=𝟐 𝑩 𝒕 𝒅 𝑩 𝒕 +𝒅𝒕 Hence, the solution is π‘₯(𝑑)= 𝐡 𝑑 2 .

38 Stochastic Differential Equations
Example 2: Solve 𝑑π‘₯=π‘Ÿπ‘₯𝑑𝑑+𝜎π‘₯𝑑 𝐡 𝑑 where π‘Ÿ,𝜎 constant Initial condition: π‘₯ 0 = π‘₯ 0 The solution is the geometric Brownian motion π‘₯ 𝑑 = π‘₯ 0 exp π‘Ÿβˆ’ 1 2 𝜎 2 𝑑+𝜎 𝐡 𝑑 . Note: geometric Brownian motion is the underlying model for the Black–Scholes equations that are used to price financial derivatives

39 Stochastic Differential Equations
Example 2: Solve 𝑑π‘₯=π‘Ÿπ‘₯𝑑𝑑+𝜎π‘₯𝑑 𝐡 𝑑 Let our guess be π‘₯=β„Ž 𝑑,𝑦 = π‘₯ 0 𝑒 𝑦 where 𝑦= π‘Ÿβˆ’ 1 2 𝜎 2 𝑑+𝜎 𝐡 𝑑 . Ito formula: 𝑑π‘₯= πœ•β„Ž πœ•π‘‘ 𝑑𝑑+ πœ•β„Ž πœ•π‘¦ 𝑑𝑦+ 1 2 πœ• 2 β„Ž πœ• 𝑦 2 𝑑𝑦𝑑𝑦 𝑑π‘₯=0𝑑𝑑+ π‘₯ 0 𝑒 𝑦 𝑑𝑦+ 1 2 π‘₯ 0 𝑒 𝑦 𝑑𝑦𝑑𝑦

40 Stochastic Differential Equations
Example 2: 𝑑π‘₯=0𝑑𝑑+ π‘₯ 0 𝑒 𝑦 𝑑𝑦+ 1 2 π‘₯ 0 𝑒 𝑦 𝑑𝑦𝑑𝑦 Note: 𝑑𝑦= π‘Ÿβˆ’ 1 2 𝜎 2 𝑑𝑑+𝜎 𝑑𝐡 𝑑 , which means 𝑑𝑦𝑑𝑦= 𝜎 2 𝑑𝑑 𝑑π‘₯= π‘₯ 0 𝑒 𝑦 π‘Ÿβˆ’ 1 2 𝜎 2 𝑑𝑑+𝜎 𝑑𝐡 𝑑 π‘₯ 0 𝑒 𝑦 𝜎 2 𝑑𝑑

41 Stochastic Differential Equations
Example 2: 𝑑π‘₯= π‘₯ 0 𝑒 𝑦 π‘Ÿπ‘‘π‘‘βˆ’ π‘₯ 0 𝑒 𝑦 1 2 𝜎 2 𝑑𝑑+ π‘₯ 0 𝑒 𝑦 𝜎 𝑑𝐡 𝑑 π‘₯ 0 𝑒 𝑦 𝜎 2 𝑑𝑑 𝑑π‘₯= π‘₯ 0 𝑒 𝑦 π‘Ÿπ‘‘π‘‘+ π‘₯ 0 𝑒 𝑦 𝜎 𝑑𝐡 𝑑 Since π‘₯= π‘₯ 0 𝑒 𝑦 , 𝒅𝒙=𝒓𝒙𝒅𝒕+πˆπ’™ 𝒅𝑩 𝒕 Hence, the solution is π‘₯ 𝑑 = π‘₯ 0 exp π‘Ÿβˆ’ 1 2 𝜎 2 𝑑+𝜎 𝐡 𝑑 .

42 Stochastic Differential Equations
Example 3: Solve 𝑑π‘₯= 𝐡 𝑑 𝑑𝑑+𝑑𝑑 𝐡 𝑑 Initial condition: π‘₯ 0 =𝑐 The solution is π‘₯ 𝑑 =𝑑 𝐡 𝑑 +𝑐.

43 Stochastic Differential Equations
Example 4: Solve 𝑑π‘₯=(1βˆ’ 𝐡 𝑑 2 ) 𝑒 βˆ’2π‘₯ 𝑑𝑑+2 𝐡 𝑑 𝑒 βˆ’π‘₯ 𝑑 𝐡 𝑑 Initial condition: π‘₯ 0 =0 The solution is π‘₯ 𝑑 = ln (1+ 𝐡 𝑑 2 ) .

44 Stochastic Differential Equations
Example 5: Solve 𝑑π‘₯= 𝐡 𝑑 𝑑𝑑+ 3 9 π‘₯ 2 𝑑 𝐡 𝑑 Initial condition: π‘₯ 0 =0 The solution is π‘₯ 𝑑 = 1 3 𝐡 𝑑 3 .

45 Stochastic Differential Equations
Example 6: Solve 𝑑π‘₯= βˆ’1 2 π‘₯𝑑𝑑+ 1βˆ’ π‘₯ 2 𝑑 𝐡 𝑑 Initial condition: π‘₯ 0 =0 The solution is π‘₯ 𝑑 = sin 𝐡 𝑑 .


Download ppt "Random WALK, BROWNIAN MOTION and SDEs"

Similar presentations


Ads by Google