Download presentation
Presentation is loading. Please wait.
1
Logarithmic Functions and Their Graphs
Section 3.3 â Day 1
2
đŚ= log đ (đĽ) if and only if đ đŚ =đĽ
What are Logarithms?? Logarithms are inverses of exponential functions. Exponential Function: đ đĽ =đâ đ đĽ If đĽ>0 and 0<đâ 1, then, đŚ= log đ (đĽ) if and only if đ đŚ =đĽ Ex: log 3 (9) â 3 đŚ =9 So what is đŚ? đŚ=2, đđ 3 2 =9
3
Basic Properties of Logarithms
For 0<đâ 1,đĽ>0, and for any real number đŚ, log đ 1 =0 Because đ 0 =1. log đ đ =1 Because đ 1 =đ. log đ đ đŚ =đŚ Because đ đŚ = đ đŚ đ log đ đĽ =đĽ Because log đ đĽ = log đ đĽ
4
Common Logarithms â Base 10
The common logarithm function log 10 đĽ = log đĽ This is the inverse of the exponential function: đ đĽ = 10 đĽ So, đŚ= log đĽ if and only if đŚ =đĽ
5
Other Properties of Logarithms
Let đĽ and đŚ be real numbers with đĽ>0. log 1=0 Because =1 log 10=1 Because =10 log 10 đŚ =đŚ Because 10 đŚ = 10 đŚ 10 log đĽ =đĽ Because log đĽ= log đĽ
6
Logarithmic â Exponential
â 2 3 =8 log 4 1=0 â 4 0 =1 log =1 â 12 1 =12 log =â1 â â1 =4 đ đŚ =đĽâđŚ= log đ (đĽ) Ex: 3 4 =81 â log 3 81=4 7 1 =7 â log 7 7=1 14 0 =1 â log 14 1=0 1 2 â5 =32 â log =â5
7
Exercises #2 â #18 Problems Solutions log 4 4 log 2 32 log 5 3 25
Directions: Evaluate the logarithmic expression without using a calculator. Problems Solutions log 4 4 log 2 32 log log 10 3 log 100,000 log 3 10 =1 =5 = 2 3 =3 = 1 3
8
Natural Logarithms â Base đ
The natural logarithm function log đ đĽ = lđ đĽ This is the inverse of the exponential function: đ đĽ = đ đĽ So, đŚ= lđ đĽ if and only if đ đŚ =đĽ
9
Basic Properties of Natural Logarithms
Let đĽ and đŚ be real numbers with đĽ>0. ln 1=0 Because đ 0 =1. ln đ=1 Because đ 1 =đ. ln đ đŚ =đŚ Because đ đŚ = đ đŚ đ đđđĽ =đĽ Because ln đĽ= ln đĽ
10
Exercises #2 â #18 Problems Solutions ln đ 3 ln 1 đ ln 4 đ =3 =â1
Directions: Evaluate the logarithmic expression without using a calculator. Problems Solutions ln đ 3 ln 1 đ ln 4 đ =3 =â1 = 1 4
11
Exercises #20 â #22 7 log 7 3 đ ln 6 =3 =6 Problems Solutions
Directions: Evaluate the expression without using a calculator. Problems Solutions 7 log 7 3 đ ln 6 =3 =6
12
Exit Slip log 3 81= log 10 â4 = ln đ â5 = Challenge: (Extra Credit)
Directions: Evaluate the expression without using a calculator. log 3 81= log 10 â4 = ln đ â5 = Challenge: (Extra Credit) ln đ 7 =
13
Logarithmic Functions and Their Graphs
Section 3.3 â Day 2
14
Exercises #24 â #30 Problems Solutions log đĽ =2 log đĽ =â1 ln đĽ =3
Directions: Solve the equation by changing it to exponential form. Problems Solutions log đĽ =2 log đĽ =â1 ln đĽ =3 ln đĽ =â2 100 0.1 đ 3 â đ â2 â0.1353
15
Exercises #32 â #36 10 đĽ =3 đ đĽ =4.2 đ 2đĽ =5.3 Problems Solutions
Directions: Solve the equation by changing it to logarithmic form. Problems Solutions 10 đĽ =3 đ đĽ =4.2 đ 2đĽ =5.3 log 3 â0.4771 ln 4.2 â1.4351 lnâĄ(5.3) 2 â0.8339
16
Exercises #38 â #40 ln đĽ =2.8 log đĽ =8.23 Problems Solutions
Directions: Solve the equation. Problems Solutions ln đĽ =2.8 log đĽ =8.23 đ 2.8 â â 169,824,365
17
Logarithmic Graph Domain: (0,â) Range: (ââ,â) Asymptote đĽ=0 X Y 0.4
â 0.6 â 0.8 â 1 2 3 4 5 6 Domain: (0,â) Range: (ââ,â) Asymptote đĽ=0
18
Homework: Due 1/8 P. 291 â 292 #2 â #40 (Even)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.