Presentation is loading. Please wait.

Presentation is loading. Please wait.

Muon RLA - Design Status and New Options

Similar presentations


Presentation on theme: "Muon RLA - Design Status and New Options"— Presentation transcript:

1 Muon RLA - Design Status and New Options
Alex Bogacz Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. MAP Winter Meeting, Jefferson Lab, March 2, 2011

2 Linac and RLAs - IDS IDS Goals: RLA with FFAG Arcs
244 MeV 0.6 GeV/pass 3.6 GeV 0.9 GeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV 79 m Vasiliy Morozov IDS Goals: Define beamlines/lattices for all components Matrix based end-to-end simulation (machine acceptance) (OptiM) Field map based end-to-end simulation: ELEGANT, GPT and G4Beamline Error sensitivity analysis Component count and costing Two regular droplet arcs replaced by one two-pass FFAG arc K. Beard Y. Roblin C. Bontoui MAP Winter Meeting, Jefferson Lab, March 2, 2011

3 Pre-Linac - Longitudinal phase-space
Initial distribution ex/ey = 4.8 mm rad el = sDp sz/mmc = 24 mm ELEGANT (Fieldmap) OptiM (Matrix) MAP Winter Meeting, Jefferson Lab, March 2, 2011

4 Injection/Extraction Chicane
$Lc = 60 cm $angH = 9 deg. $BH = 10.2 kGauss $Lc = 60 cm $angV = 5 deg. $BV = 4.7 kGauss m+ m+ m- m- 0.9 GeV 50 cm 1.7 m 2.1 GeV 1.5 GeV 30 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y FODO lattice: 900/1200 (h/v) betatron phase adv. per cell Double achromat Optics H -H V -V 3 cells 4 cells MAP Winter Meeting, Jefferson Lab, March 2, 2011

5 Chicane - Double Achromat Optics
30 0.5 PHASE_X&Y Q_X Q_Y Dfx = 2p Dfy = 2p betatron phase 30 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Double achromat Optics FODO quads: L[cm] = 50 F: G[kG/cm] = 0.322 D: G[kG/cm] = sextupole pair to correct vert. emittance dilution H -H V -V 3 cells 4 cells MAP Winter Meeting, Jefferson Lab, March 2, 2011

6 Multi-pass Linac Optics – Bisected Linac
‘half pass’ , MeV initial phase adv/cell 90 deg. scaling quads with energy 15 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y quad gradient 1-pass, MeV mirror symmetric quads in the linac 15 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y quad gradient MAP Winter Meeting, Jefferson Lab, March 2, 2011

7 Multi-pass bi-sected linac Optics
30 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 1.2 GeV 0.9 GeV 3.0 GeV 2.4 GeV 1.8 GeV 3.6 GeV Arc 4 Arc 3 Arc 2 Arc 1 bx = 3.2 m by = 6.0 m ax = ay =1.5 bx,y → bx,y axy → - axy bx = 6.3 m by = 7.9 m ax = ay =1.3 bx = 7.9 m by = 8.7 m ax = ay =1.3 bx = 13.0 m by = 14.4 m ax = ay =1.5 quad grad. length MAP Winter Meeting, Jefferson Lab, March 2, 2011

8 Linac-to-Arc – Chromatic Compensation
E =1.8 GeV 72 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 15 3 BETA_X&Y[m] DISP_X&Y[m] -3 BETA_X BETA_Y DISP_X DISP_Y ‘Matching quads’ are invoked No 900 phase adv/cell maintained across the ‘junction’ Chromatic corrections needed – two pairs of sextupoles MAP Winter Meeting, Jefferson Lab, March 2, 2011

9 Linac-to-Arc - Chromatic Corrections
initial uncorrected two families of sextupoles 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 72 MAP Winter Meeting, Jefferson Lab, March 2, 2011

10 Mirror-symmetric ‘Droplet’ Arc – Optics
130 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E =1.2 GeV (bout = bin and aout = -ain , matched to the linacs) 2 cells out transition 2 cells out 10 cells in transition MAP Winter Meeting, Jefferson Lab, March 2, 2011

11 Alternative multi-pass linac Optics
90 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 1.2 GeV 0.9 GeV 3.0 GeV 2.4 GeV 1.8 GeV 3.6 GeV Arc 1 Arc 4 Arc 3 Arc 2 bx = 3.2 m by = 6.0 m ax = ay =1.5 bx,y → bx,y axy → - axy quad grad. length MAP Winter Meeting, Jefferson Lab, March 2, 2011

12 Arcs ‘Crossing’ - Vertical Bypass
m+ m- 42 30 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4 vertical bends: B = 1 Tesla L = 10 cm E = 1.2. GeV Dy = 25 cm V -V 4 cells (900 FODO) MAP Winter Meeting, Jefferson Lab, March 2, 2011

13 ‘Droplet’ Arcs scaling – RLA I
Ei [GeV] pi/p1 cell_out cell_in length [m] Arc1 1.2 1 2×2 10 130 Arc2 1.8 1.43 2×3 15 172 Arc3 2.4 1.87 2×4 20 214 Arc4 3.0 2.30 2×5 25 256 Fixed dipole field: Bi =10.5 kGauss Quadrupole strength scaled with momentum: Gi = × 0.4 kGauss/cm Arc circumference increases by: (1+1+5) × 6 m = 42 m MAP Winter Meeting, Jefferson Lab, March 2, 2011

14 ‘Droplet’ Arcs scaling – RLA II
Ei [GeV] pi/p1 cell_out cell_in length [m] Arc1 4.6 1 2×2 10 260 Arc2 6.6 1.435 2×3 15 344 Arc3 8.6 1.870 2×4 20 428 Arc4 10.6 2.305 2×5 25 512 Fixed dipole field: Bi = 40.3 kGauss Quadrupole strength scaled with momentum: Gi = × 1.5 kGauss/cm Arc circumference increases by: (1+1+5) × 12 m = 84 m MAP Winter Meeting, Jefferson Lab, March 2, 2011

15 Component Count beamline RF cavities solenoids dipoles quads sext
1-cell 2-cell pre-accelerator 6 62 25 inj-chic I 8+3 16 3 RLA I linac 24 26 arc1 35 43 arc2 49 57 8 arc3 63 71 arc4 77 85 inj-chic II RLA II 80 42 Lambertson 1 MAP Winter Meeting, Jefferson Lab, March 2, 2011

16 Summary Piece-wise end-to-end simulation with OptiM/ELEGANT (transport codes) Solenoid linac Injection chicane I (new more compact design) RLA I + Injection chicane II + RLA II Chromaticity correction with sextupoles validated via tracking Alternative multi-pass linac optics Currently under study… GPT/G4beamline End-to-end simulation with fringe fields (sol. & rf cav.) Engineer individual active elements (magnets and RF cryo modules) MAP Winter Meeting, Jefferson Lab, March 2, 2011

17 Backup slides MAP Winter Meeting, Jefferson Lab, March 2, 2011

18 Initial phase-space after the cooling channel at 220 MeV/c
Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c ISS/IDS erms A = (2.5)2 e normalized emittance: ex/ey mmrad 4.8 30 longitudinal emittance: el (el = sDp sz/mmc) momentum spread: sDp/p bunch length: sz mm 24 0.07 165 150 0.17 412 bx,y = 2.74 m ax,y = bg = 2.08 MAP Winter Meeting, Jefferson Lab, March 2, 2011


Download ppt "Muon RLA - Design Status and New Options"

Similar presentations


Ads by Google