Download presentation
Presentation is loading. Please wait.
1
Response to Call For Proposal for P802.11n
Month 2003 doc.: IEEE /xxxr0 Response to Call For Proposal for P802.11n Hervé Bonneville, Bruno Jechoux, Romain Rollet Mitsubishi ITE 1, allee de Beaulieu, Rennes, France Alexandre Ribeiro Dias, Stéphanie Rouquette-Léveil, Markus Muck, Marc de Courville, Jean-Noël Patillon, Karine Gosse, Brian Classon Motorola Labs Parc les Algorithmes – Saint Aubin – Gif sur Yvette Cedex - France Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
2
Mitsubishi ITE - Motorola Joint Proposal Background
Month 2003 doc.: IEEE /xxxr0 Mitsubishi ITE - Motorola Joint Proposal Background Complete proposal resulting from a joint effort of Mitsubishi Electric ITE and Motorola to make n the system of choice for Consumer Electronics market while enhancing the service for PC/enterprise historical market. Goal is to provide an efficient MAC handling of QoS sensitive applications taking full benefit of a high throughput MIMO based PHY while keeping compatibility with legacy systems Various environments supported Enterprise Home environment Hot Spot Proven and simple solutions summary deck Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
3
Content Proposal Guide and Overview PHY Description Link Performance
Month 2003 doc.: IEEE /xxxr0 Content Proposal Guide and Overview PHY Description Link Performance MAC Description System Performance Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
4
Guide to Mitsubishi ITE -Motorola Proposal
Month 2003 doc.: IEEE /xxxr0 Guide to Mitsubishi ITE -Motorola Proposal The complete proposal submitted by MITSUBISHI ITE and MOTOROLA consists of the following four documents: n- mitsubishi-ite-motorola-proposal-response Response to functional requirements, comparison criteria table. Includes also a technical overview n-mitsubishi-ite-motorola-proposal-detaileddescription Detailed technical description of the proposal n-mitsubishi-ite-motorola-proposal-presentation this document n-mitsubishi-ite-motorola-proposal-simresults Detailed system simulation results (Excel spread sheet) Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
5
Overall goal of the proposed PHY design
Month 2003 doc.: IEEE /xxxr0 Overall goal of the proposed PHY design Modification of IEEE a-1999 PHY in order to provide new OFDM PHY modes meeting the IEEE802.11n PAR with: High spectrum efficiency for achieving target performance with increased data rates Data streams transmitted in parallel using multi-antenna transceivers Optimized multi-carrier modulation with lower overhead Enhanced forward error correction schemes Improved link budget for lower to medium data rates Providing the IEEE802.11a PHY data rates with increased range/link quality Adapted to the support of services requiring small packet size such as VoIP Exploit multi-antenna capabilities for robust transmission modes Turn gains in spectral efficiency into link budget advantages Favored short term implementation and deployment with robust, low complexity techniques Open-loop multi-antenna solutions: simple, robust and without protocol overhead (feedback signalization) Improve operation in limited Outdoor environments with support of long channel impulse responses Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
6
Key features of the PHY Multi-antenna extension (mandatory):
MIMO with at least 2Tx/2Rx antennas scaling up to 4Tx combined with combination of Space Division Multiplexing and Space Time Block Coding Support for asymmetric antenna configurations to accommodate various classes of devices (laptop/phone/PDA) Open-loop modulation technique to avoid protocol overhead consumed in feedback signalization Second OFDM modulator (optional): 128 carriers in with 104 data carriers, and double duration guard interval Provide PHY rate increase of 8% for 20MHz Operate in larger environments, take better into account Tx/Rx filters due to increased guard interval length New nPLCP preambles (same for 64- and 128-point IFFT/FFT) for MIMO support Plus: High order modulation (optional): 256-QAM 20MHz bandwidth mandatory Space/frequency interleaver IEEE a convolutional code with code rates 1/2, 2/3, 3/4 and 5/6 Bonneville,Patillon Mitsubishi/Motorola
7
Proposal Overview: MAC
Month 2003 doc.: IEEE /xxxr0 Proposal Overview: MAC Full compatibility with legacy stations QoS support with guarantied throughput and stringent delay constraints support even in heavily loaded system Centralised on demand resource allocation with Resource announcement, efficient even with simple per priority Round Robin scheduler TDMA mode embedded in e superframe Resource request/grant scheme for allocation in UL Aggregation at PHY level (1 to several destination) Fast selective repeat ARQ for low latency and low overhead error correction summary deck Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
8
Proposal Overview: MAC (Continued)
Month 2003 doc.: IEEE /xxxr0 Proposal Overview: MAC (Continued) Short and fixed size MAC-PDU with MAC Header compression Flexible architecture for efficient handling of heterogeneous traffics (Bursty, CBR, Elastic) Support of multiple environments without context-dependent parameter tuning High efficiency and Scalable architecture (constant overhead when data rate increases) Low complexity, low power consumption summary deck Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
9
Typical system performances
All QoS flows satisfied Scenario XVI: Use the most efficient PHY mode (3x3 256QAM3/4, Ns=3) (*) bis stands for: “with fully backlogged TCP sources” Bonneville,Patillon Mitsubishi/Motorola
10
PHY Description Month 2003 doc.: IEEE 802.11-03/xxxr0 summary deck
Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
11
PHY description: Multi-antenna scheme
Transmission of 1, 2 or 3 parallel streams using: Space-Time Block Coding (STBC), Spatial Division Multiplexing (SDM) or robust hybrid solutions (STBC/SDM) optimize the rate vs link budget trade-off 2, 3 or 4 transmit antennas The number of receive antennas determines the maximum number of spatial streams that can be transmitted. The capability of decoding 2 parallel data streams is mandatory all the devices have to be able to decode all the modes where the number of spatial streams is lower or equal than the number of receive antennas in the device. It is required for a device to exploit all its antennas in transmission even for optional modes. 2 or more receive antennas With STBC or STBC/SDM, asymmetric antenna configurations can be supported Importance of configurations in which NTx ≠ NRx NTx > NRx e.g. between AP and mobile handset (in DL) NTx < NRx e.g. between MT and AP (UL), or if MT have upgraded multi-antenna capabilities compared to AP (infrastructure upgrade cost) Bonneville,Patillon Mitsubishi/Motorola
12
2 transmit antenna schemes proposed
Bonneville,Patillon Mitsubishi/Motorola
13
OFDM modulation OFDM modulation based on IEEE802.11a parameters:
48 data subcarriers, 64-point IFFT/FFT 180Mbps maximum PHY rate (120Mbps mandatory) 2nd OFDM modulation (optional extension): 128-point IFFT/FFT 104 data subcarriers, 8 pilots Guard interval duration: 1.6s Symbol interval: 6.4s 234Mbps maximum PHY rate Bonneville,Patillon Mitsubishi/Motorola
14
Mode: 2-TX 48 carriers Mode: 2-TX 104 carriers Month 2003
doc.: IEEE /xxxr0 288 384 8 3/4 256QAM 2 144Mbps 240 6 5/6 64QAM 120Mbps 216 108Mbps 192 2/3 96Mbps 144 4 16QAM 72Mbps 1 60Mbps 48Mbps 36Mbps 96 1/2 24Mbps 72 QPSK 18Mbps 48 12Mbps 24 BPSK 6Mbps Data bits/ symbol (NDBPS) Coded bits/ symbol (NCBPS) Coded bits per subcarrier per stream (NBPSC) Coding rate (R) Modulation Number of spatial streams (NS) Data rate (Mbits/s) Mode: 2-TX 48 carriers 624 832 8 3/4 256QAM 2 156Mbps 520 6 5/6 64QAM 130Mbps 468 117Mbps 416 2/3 104Mbps 312 4 16QAM 78Mbps 1 65Mbps 52Mbps 39Mbps 208 1/2 26Mbps 156 QPSK 19.5Mbps 104 13Mbps 52 BPSK 6.5Mbps Data bits/ symbol (NDBPS) Coded bits/ symbol (NCBPS) Coded bits per subcarrier per stream (NBPSC) Coding rate (R) Modulation Number of spatial streams (NS) Data rate (Mbits/s) Mode: 2-TX 104 carriers Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
15
Mode: 3/4-TX 48 carriers Mode: 3/4-TX 104 carriers Month 2003
doc.: IEEE /xxxr0 288 384 8 3/4 256QAM 3 216Mbps 240 6 5/6 64QAM 180Mbps 216 162Mbps 192 2/3 144Mbps 2 120Mbps 96Mbps 144 4 16QAM 72Mbps 96 1/2 48Mbps 72 QPSK 36Mbps 48 24Mbps 24 1 BPSK 12Mbps Data bits per OFDM symbol Coded bits per OFDM symbol Coded bits per subcarrier per stream (NBPSC) Coding rate (R) Modulation Number of spatial streams (NS) Data rate (Mbits/s) Mode: 3/4-TX 48 carriers 624 832 8 3/4 256QAM 3 234Mbps 520 6 5/6 64QAM 195Mbps 468 175.5Mbps 416 2/3 156Mbps 2 130Mbps 104Mbps 312 4 16QAM 78Mbps 208 1/2 52Mbps 156 QPSK 39Mbps 104 26Mbps 52 1 BPSK 13Mbps Data bits per OFDM symbol Coded bits per OFDM symbol Coded bits per subcarrier per stream (NBPSC) Coding rate (R) Modulation Number of spatial streams (NS) Data rate (Mbits/s) Mode: 3/4-TX 104 carriers Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
16
Frequency and space interleaver
IEEE802.11a based frequency interleaver defined for both 48 and 104 data subcarriers Spatial division: NSD : number of data subcarriers Bonneville,Patillon Mitsubishi/Motorola
17
nPLCP preamble (I/2) Bonneville,Patillon Mitsubishi/Motorola
18
nPLCP preamble (II/2) Overview on different frame structures:
Bonneville,Patillon Mitsubishi/Motorola
19
Link Performance Month 2003 doc.: IEEE 802.11-03/xxxr0 summary deck
Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
20
Simulation results AWGN, TGnB, TGnD, TGnE channel comparisons for 20MHz Bandwidth Essential points Throughput increase with optional modes (FFT-128) at constant SNR requirements in AWGN channels Robust modes based on STBC for good coverage and support of asymetric configurations Unilateral modification of number of antennas in TX and RX can be exploited Useful for independent evolution of AP/MT Bonneville,Patillon Mitsubishi/Motorola
21
Simulation results - AWGN
2TX/2RX to 4TX/4RX configuration and SNR ~21dB: 120Mbps 180Mbps (130Mbps 195Mbps) Bonneville,Patillon Mitsubishi/Motorola
22
Simulation results - TGnB
XXX 42dB 34dB 180 10dB 7dB 6dB 12 20dB 16dB 14dB 48 32dB 24dB 21dB 96 36dB 28dB 24.5dB 120 SNR for PER=10-1 Mode/ Mbps Diversity gain for all streams 120 Mbps lowers SNR ~ 36dB 28dB 24.5dB Bonneville,Patillon Mitsubishi/Motorola
23
Simulation results - TGnB
For new schemes: Same behaviour is observed for diversity modes as for classical schemes Clear improvements for 2 streams from 2x2 3x3 mode Clear improvements for 3 streams from 2x2/3x3 4x4 mode Bonneville,Patillon Mitsubishi/Motorola
24
Simulation results - TGnB
26.5dB 120 5dB 12 16dB 48 24dB 96 SNR for PER=10-1 Mode/Mbps 31.5dB 120 11dB 12 20dB 48 28dB 96 SNR for PER=10-1 Mode/Mbps # TX antennas < # RX antennas e.g. Update of MT # TX antennas > # RX antennas e.g. Update of AP Bonneville,Patillon Mitsubishi/Motorola
25
PHY Throughput Analysis – TGnB
Link adaptation is based on long term average SNR sub-optimum inferior bound Finer grid possible with more modes Bonneville,Patillon Mitsubishi/Motorola
26
Simulation results - TGnD
XXX 36dB 29dB 180 (effect) 180 5dB 4.5dB 3.5dB 12 18dB 14dB 11dB 48 27.5dB 21dB 19dB 96 35dB 25.5dB 23dB 120 SNR for PER=10-1 Mode/ Mbps Diversity gain for all streams 120 Mbps lowers SNR ~ 35dB 25.5dB 23dB Bonneville,Patillon Mitsubishi/Motorola
27
Simulation results - TGnD
24dB 120 2dB 12 14.5dB 48 20dB 96 SNR for PER=10-1 Mode/Mbps 30dB 120 7dB 12 17dB 48 25.5dB 96 SNR for PER=10-1 Mode/Mbps # TX antennas < # RX antennas e.g. Update of MT # TX antennas > # RX antennas e.g. Update of AP Bonneville,Patillon Mitsubishi/Motorola
28
Simulation results - TGnE
XXX 43dB 31dB 180 7dB 5dB 4dB 12 19dB 15dB 12dB 48 30dB 22.5dB 20dB 96 37dB 26.5dB 24dB 120 SNR for PER=10-1 Mode/ Mbps Diversity gain for all streams 120 Mbps lowers SNR ~ 37dB 26.5dB 24dB Bonneville,Patillon Mitsubishi/Motorola
29
Simulation results - TGnE
25dB 120 4dB 12 15dB 48 21.5dB 96 SNR for PER=10-1 Mode/Mbps 31.5dB 120 9dB 12 18dB 48 26.5dB 96 SNR for PER=10-1 Mode/Mbps # TX antennas < # RX antennas e.g. Update of MT # TX antennas > # RX antennas e.g. Update of AP Bonneville,Patillon Mitsubishi/Motorola
30
Simulation results – TGnD/TGnE
Similar to TGnB: 2Tx: Diversity gain for 1 stream, but not for 2 streams 120 Mbps requires SNR ~ 35dB (TGnD) 37dB (TGnE) 3Tx: Diversity gain for 2 streams, but not for 3 streams 120 Mbps lowers SNR: ~ 36dB 26dB (TGnD) ~ 37dB 26.5dB (TGnE) 4Tx: Diversity gain for all streams 120 Mbps lowers SNR ~ 36dB 26dB 23dB (TGnD) ~ 37dB 26.5dB 24dB (TGnD) Bonneville,Patillon Mitsubishi/Motorola
31
Simulation results – Offset compensation
No significant impact at 10% PER in channel E (NLOS) Bonneville,Patillon Mitsubishi/Motorola Figure 42 - Offset impact in 4x4 antenna configuration
32
Simulation results – Offset compensation
0.0298 0.0183 0.0297 120Mbps 2x2 0.0042 0.0037 0.0039 96Mbps 0.0018 0.0016 48Mbps 0.0002 0.0003 12Mbps PER when carrier offset =+40ppm carrier offset = 0ppm carrier offset = -40ppm Data rate (Mbits/s) Antenna configuration Impact of carrier frequency offset and symbol clock offset at SNR=50dB in channel E (LOS): Small degradation of the PER performance High data rate modes are more impacted: PER (+40ppm) = 112/100xPER (0ppm) at 48Mbps PER (+40ppm) = 163/100xPER (0ppm) at 120Mbps Bonneville,Patillon Mitsubishi/Motorola Figure 42 - Offset impact in 4x4 antenna configuration
33
Simulation results – Offset compensation
0.0974 0.0617 0.0963 180Mbps 3x3 0.0050 0.0045 0.0043 120Mbps 0.0041 96Mbps 0.0005 0.0006 48Mbps ~0 0.0001 0.0002 12Mbps PER when carrier offset =+40ppm carrier offset = 0ppm carrier offset = -40ppm Data rate (Mbits/s) Antenna configuration 0.0029 0.0024 0.0023 180Mbps 4x4 0.0022 0.0021 120Mbps 0.0019 0.0016 96Mbps 0.0001 48Mbps ~0 12Mbps PER when carrier offset =+40ppm carrier offset = 0ppm carrier offset = -40ppm Data rate (Mbits/s) Antenna configuration High data rate modes are less impacted if spatial diversity: 3x3: PER (+40ppm) = 158/100xPER (0ppm) at 180Mbps 4x4: PER (+40ppm) = 121/100xPER (0ppm) at 180Mbps Bonneville,Patillon Mitsubishi/Motorola Figure 42 - Offset impact in 4x4 antenna configuration
34
Implementation complexity
Bonneville,Patillon Mitsubishi/Motorola
35
Conclusion Proposal: MIMO extension of IEEE802.11a addressing
Short term implementation needs through mandatory modes relying on a mix of STBC and SDM Take into account device size constraints allowing asymmetric TX/TX antenna configuration independent upgrade of APs / MTs possible Enable PHY throughput covering 54Mbits/s 180 (234) Mbps Bonneville,Patillon Mitsubishi/Motorola
36
MAC Description Month 2003 doc.: IEEE 802.11-03/xxxr0 summary deck
Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
37
Why a new access mode? 802.11n scope:
Enhance performance, properly serve QoS application and increase efficiency. Identified weaknesses in legacy MAC: Collisions and contention overhead (EDCA) Fixed Inter Frame Spaces (All) Polling efficiency and latency (HCCA) MAC-PDU overhead (All) PLCP overhead (All) Block ACK limitations (All) Numerous new patches to legacy required Bonneville,Patillon Mitsubishi/Motorola
38
Why a new access mode? (cont’d)
Minimum set of modifications Centralised on-demand resource allocation Polling enhancement New frame format MAC PDUs and PLCP overhead reduction Flexible and error-resistant frame aggregation ARQ scheme More powerful and more flexible than Block ACK In-band, resource thrifty signaling Latency reduction and efficiency increase TDM frame Collision and contention suppression A new access mode is preferable Bonneville,Patillon Mitsubishi/Motorola
39
MAC Design philosophy Driving idea: Efficient even for Bursty and uncharacterised flows Solution TDMA with variable duration time interval (TI) allocation Fast resource request/grant scheme In-band signalling in already allocated TI Dedicated contention access TI for resource requests Resource announcement How does ECCF handle mixed traffic? Fast resource request/grant scheme permits to adapt in real time to application needs variations Resource request can be sent to the RRM through in-band signalling in any TI allocated to the transmitter (whatever its destination), Otherwise it can be sent in a signalling-dedicated contention access TI. TI allocation broadcast at the beginning of each TDM frame Bonneville,Patillon Mitsubishi/Motorola
40
Stack overview MAC layer is enhanced with the “Extended Centralised Coordination Function” mode (ECCF). Functions are distributed over 4 sub-layers 802.2 LLC 802.2 LLC ECCF MAC Legacy MAC Packet Sequence Number Assignments MAC Header Compression LLCCS Sequence Number Assignments Fragmentation Encryption MDU Header + CRC Segment Sequence Number Assignments Segmentation/Re-Assembly SAR MIS Error and Flow Control MLS Encryption MPDU Header Signalling Insertion PHY PHY Bonneville,Patillon Mitsubishi/Motorola
41
Frame structure and timing
MAC Super Frame & Beacon kept for compatibility. A part of the Contention Free Period (CFP) divided into MAC Time Frame (MTF) of fixed duration (for example 2 ms). Resource scheduling performed on a per MTF basis. Time Intervals (TI) of variable duration dynamically allocated to STAs within an MTF. MAC Super Frame CFP CP CFP MTF Period for ECCF Period for PCF/HCCA access Period for DCF/EDCA access Period for ECCF Beacon Beacon Beacon Information CF Parameter Set ECCF Parameter Set Bonneville,Patillon Mitsubishi/Motorola
42
Frame structure and timing (cont.)
ECCF insertion into CAP: CAP generated by the HC using CF-Poll data frame as defined in the e extension. CF-Poll contains the RRM MAC address (HC and RRM can be distinct) as destination address, and allocates a reserved time period for ECCF. CAP is split by the RRM into successive MTFs of fixed duration, each being described by a PGPM broadcast at the beginning of the MTF. SIFS PIFS MTF DIFS CF-Poll PGPM PGPM Data Data CAP Legacy MAC frame ECCF MAC frame Bonneville,Patillon Mitsubishi/Motorola
43
Frame structure and timing (cont.)
TI constituted of one MPDU = data unit exchanged with the PHY layer as in legacy (i.e. one PLCP preamble per MPDU) MPDU contains two parts: signalling and data contents defined by the emitter (source STA) data and signalling can be intended for one or more destination STAs Possible long PHY bursts MTF composition defined in a specific MPDU = PGPM MTF MPDU MPDU MPDU MPDU PGPM Data Data Data Data PGPM TI#0 TI#1 TI#2 TI#3 TI#4 Bonneville,Patillon Mitsubishi/Motorola
44
Power Saving Inherent power saving facilities Long-term power saving:
An active STA doesn’t need to listen to all MPDUs Only resource grants announcements and traffic it is destined to STA may be on a low power scheme otherwise Long-term power saving: RRM allows an STA to enter sleep mode when it has no more traffic to schedule for it RRM will grant resource to that STA after the sleeping period During sleep mode, traffic is buffered in any source STA as there is no resource granted for it Compatible with direct link communication Bonneville,Patillon Mitsubishi/Motorola
45
System Performance Month 2003 doc.: IEEE 802.11-03/xxxr0 summary deck
Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
46
Simulations Unique MAC configuration (no knob activation nor parameter tuning depending on the context or scenario) Simulation conditions: MAC, EC and segmentation overhead fully taken into account Dynamic resource allocation based on requests from STA Simple Round Robin scheduler (per priority level), 2 priority classes No contention period, 2 ms long MTF PHY modes Signaling in robust PHY modes Data in MIMO (2x2 up to 3x3), 20 MHz (from 6 Mbit/s up to 216 Mbit/s) PHY abstraction in system simulation (preliminary configuration) PHY mode selected with respect to the average SNR at the receiver PER uniformly distributed in time Bonneville,Patillon Mitsubishi/Motorola
47
ECCF Robustness MAC Efficiency vs PER (Scenario I bis, IV, VI bis)
Month 2003 doc.: IEEE /xxxr0 ECCF Robustness MAC Efficiency vs PER (Scenario I bis, IV, VI bis) Slight impact of the PER on MAC efficiency retransmission with low signalling SR-ARQ MAC efficiency: Robust vs PER > 60% even for harsh conditions (*) High performance even in bad radio conditions Results valid whatever the application packet size (c.f.segmentation) (*) PER for 134 bytes packets, 1E-1 equivalent to 9.5E-1 for 4000 bytes or 6.9E-1 for 1500 bytes packets Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
48
ECCF Scalability Goodput at MAC SAP vs PHY data rate (point-to-point scenario) linear variation MAC efficiency: Constant vs PHY rate High level: [76% ; 86%] Fully scalable for high bit rates Results valid whatever the application packet size (c.f.segmentation) Bonneville,Patillon Mitsubishi/Motorola
49
Mixed traffic handling
Capacity usage at MAC-SAP vs. Number of VoIP sessions 1 TCP data flow transmitted using MIMO 3x3_64QAM2/3 (Ns=3) [144Mbit/s] VoIP: 120-byte packets emitted every 10 ms (2x96kbit/s) n VoIP sessions, using either 2x2_64QAM2/3 (Ns=1) [48Mbit/s] or 2x2_16QAM1/2 (Ns=1) [24 Mbit/s] MAC Efficiency between 78% and 55% 30 VoIP sessions + at least 65 Mbit/s of TCP traffic Bonneville,Patillon Mitsubishi/Motorola
50
Delay performances IEEE TGn Usage models : Scenario I (Home)
Traffic classification based on priority level (VoIP > TCP) Delay comparison for different error rate [cdf(d>D)] Strong QoS constraints of VoIP reached: with a simple centralised scheduling an efficient ARQ Max delay below 20 ms for QoS traffic Bonneville,Patillon Mitsubishi/Motorola
51
Simulation results for Scenarios 1
all data flow transmitted using MIMO 3x2 64QAM 3/4 (Ns=2) or 2x2 16QAM 3/4 (Ns=1) Modified scenario 1bis: Infinite TCP sources + PHY modes ( Mbit/s) All QoS requirements can be achieved with 106 Mbit/s at PHY > 76% MAC efficiency 105 Mbit/s available at MAC-SAP (138 Mbit/s avg at PHY) Bonneville,Patillon Mitsubishi/Motorola
52
Simulation results for Scenario 4
PHY modes Mbit/s > 72% MAC efficiency 129 Mbit/s available at MAC-SAP (178 Mbit/s avg at PHY) Bonneville,Patillon Mitsubishi/Motorola
53
Simulation results for Scenarios 6
all data flow transmitted using MIMO 3x3 64QAM2/3 (Ns=2) or 2x2 64QAM5/6 (Ns=1). Modified scenario 6bis: Infinite TCP sources + PHY modes ( Mbit/s) QoS requirements can be achieved with 92 Mbit/s at PHY > 66% MAC efficiency 103 Mbit/s available at MAC-SAP (154 Mbit/s avg at PHY) Bonneville,Patillon Mitsubishi/Motorola
54
Results conclusion QoS requirements supported (throughput and delay)
Month 2003 doc.: IEEE /xxxr0 Results conclusion QoS requirements supported (throughput and delay) In all scenarios High level MAC efficiency Above 65 % in all scenarios Efficient with QoS flows as non QoS flows Very good scalability Constant efficiency versus PHY rate Backward compatibility Flexibility ensured, without context-dependent tuning Full support of all mandatory 11n simulations scenarios with a 120 Mbps PHY layer Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
55
Feasibility Nothing futuristic Proven technologies
Month 2003 doc.: IEEE /xxxr0 Feasibility Nothing futuristic TDMA has been used for years Present in many systems (GSM, , …) Just one step further than HCCA Proven technologies Centralised RRM Simple scheduler Classical ARQ Moderate complexity implementation not more complex than e (HCCA) Bonneville,Patillon Mitsubishi/Motorola H.Bonneville, B.Jechoux, Mitsubishi ITE
57
Backup Slides Bonneville,Patillon Mitsubishi/Motorola
58
Simulation results - AWGN
Mode/ Mbps SNR for PER=10-1 195 (optional) 20dB 180 120 17.5dB 96 15dB 48 6.5dB Gain in throughput (15 Mbps) with FFT-128 mode at SNR required for standard 180 Mbps mode Bonneville,Patillon Mitsubishi/Motorola
59
Simulation results - AWGN
2TX/2RX to 4TX/4RX configuration and SNR ~21dB: 120Mbps 180Mbps (130Mbps 195Mbps) Bonneville,Patillon Mitsubishi/Motorola
60
Simulation results - TGnB
Mode/ Mbps SNR for PER=10-1 180 42dB 120 36dB 28dB 96 32dB 24dB 48 20dB 16dB 12 10dB 7dB Diversity gain for 2 streams, but not for 3 streams 120 Mbps lowers SNR ~ 36dB 28dB Bonneville,Patillon Mitsubishi/Motorola
61
Simulation results (asymmetric modes) - TGnB
Mbps SNR for PER=10-1 120 35dB 96 29dB 48 20dB 12 10dB # TX antennas > # RX antennas e.g. Update of AP Diversity exploitation possible without MT update in HW Bonneville,Patillon Mitsubishi/Motorola
62
Simulation results - TGnD
Mode/ Mbps SNR for PER=10-1 120 (effect) 35dB 96 27.5dB 48 18dB 12 5dB Diversity gain for 1 stream, but not for 2 streams 120 Mbps requires SNR ~ 35dB Bonneville,Patillon Mitsubishi/Motorola
63
Simulation results - TGnD
Mode/ Mbps SNR for PER=10-1 180 (effect) 36dB 180 120 35dB 25.5dB 96 27.5dB 21dB 48 18dB 14dB 12 5dB 4.5dB Diversity gain for 2 streams, but not for 3 streams 120 Mbps lowers SNR ~ 36dB 26dB Bonneville,Patillon Mitsubishi/Motorola
64
Simulation results - TGnD
Mode/ Mbps SNR for PER=10-1 180 (effect) 36dB 29dB 180 120 35dB 25.5dB 23dB 96 27.5dB 21dB 19dB 48 18dB 14dB 11dB 12 5dB 4.5dB 3.5dB Diversity gain for all streams 120 Mbps lowers SNR ~ 35dB 25.5dB 23dB Bonneville,Patillon Mitsubishi/Motorola
65
Simulation results - TGnD
Mode/ Mbps SNR for PER=10-1 120 24dB 96 20dB 48 14.5dB 12 2dB # TX antennas < # RX antennas e.g. Update of MT Diversity exploitation possible without AP update in HW Bonneville,Patillon Mitsubishi/Motorola
66
Simulation results - TGnD
Mode/ Mbps SNR for PER=10-1 120 31dB 96 26dB 48 17.5dB 12 7dB # TX antennas > # RX antennas e.g. Update of AP Diversity exploitation possible without MT update in HW Bonneville,Patillon Mitsubishi/Motorola
67
Simulation results - TGnD
Mode/ Mbps SNR for PER=10-1 120 30dB 96 25.5dB 48 17dB 12 7dB # TX antennas > # RX antennas e.g. Update of AP Diversity exploitation possible without MT update in HW Bonneville,Patillon Mitsubishi/Motorola
68
PHY Throughput Analysis – TGnD
Link adaptation is based on long term average SNR sub-optimum inferior bound Finer grid possible with more modes Bonneville,Patillon Mitsubishi/Motorola
69
Simulation results - TGnE
Mode/ Mbps SNR for PER=10-1 120 37dB 96 30dB 48 19dB 12 7dB Diversity gain for 1 stream, but not for 2 streams 120 Mbps requires SNR ~ 37dB Bonneville,Patillon Mitsubishi/Motorola
70
Simulation results - TGnE
Mode/ Mbps SNR for PER=10-1 180 43dB 120 37dB 26.5dB 96 30dB 22.5dB 48 19dB 15dB 12 7dB 5dB Diversity gain for 2 streams, but not for 3 streams 120 Mbps lowers SNR ~ 37dB 26.5dB Bonneville,Patillon Mitsubishi/Motorola
71
Simulation results - TGnE
Mode/ Mbps SNR for PER=10-1 180 43dB 31dB 120 37dB 26.5dB 24dB 96 30dB 22.5dB 20dB 48 19dB 15dB 12dB 12 7dB 5dB 4dB Diversity gain for all streams 120 Mbps lowers SNR ~ 37dB 26.5dB 24dB Bonneville,Patillon Mitsubishi/Motorola
72
Simulation results - TGnE
Mode/ Mbps SNR for PER=10-1 120 25dB 96 21.5dB 48 15dB 12 4dB # TX antennas < # RX antennas e.g. Update of MT Diversity exploitation possible without AP update in HW Bonneville,Patillon Mitsubishi/Motorola
73
Simulation results - TGnE
Mode/ Mbps SNR for PER=10-1 120 33dB 96 27dB 48 19dB 12 8dB # TX antennas > # RX antennas e.g. Update of AP Diversity exploitation possible without MT update in HW Bonneville,Patillon Mitsubishi/Motorola
74
Simulation results - TGnE
Mode/ Mbps SNR for PER=10-1 120 31.5dB 96 26.5dB 48 18dB 12 9dB # TX antennas > # RX antennas e.g. Update of AP Diversity exploitation possible without MT update in HW Bonneville,Patillon Mitsubishi/Motorola
75
PHY Throughput Analysis – TGnE
Link adaptation is based on long term average SNR sub-optimum inferior bound Finer grid possible with more modes Bonneville,Patillon Mitsubishi/Motorola
76
PHY Throughput Analysis – TGnB
Link adaptation is based on long term average SNR sub-optimum inferior bound Finer grid possible with more modes Bonneville,Patillon Mitsubishi/Motorola
77
PHY Throughput Analysis – TGnD
Link adaptation is based on long term average SNR sub-optimum inferior bound Finer grid possible with more modes Bonneville,Patillon Mitsubishi/Motorola
78
PHY Throughput Analysis – TGnE
Link adaptation is based on long term average SNR sub-optimum inferior bound Finer grid possible with more modes Bonneville,Patillon Mitsubishi/Motorola
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.