Presentation is loading. Please wait.

Presentation is loading. Please wait.

B. Sciascia, INFN/Frascati for the KLOE collaboration

Similar presentations


Presentation on theme: "B. Sciascia, INFN/Frascati for the KLOE collaboration"— Presentation transcript:

1 B. Sciascia, INFN/Frascati for the KLOE collaboration
Vus measurement at KLOE B. Sciascia, INFN/Frascati for the KLOE collaboration DIF2006 28 February LNF

2 Unitarity test of CKM matrix – Vus
Most precise test of unitarity possible at present comes from 1st row: |Vud|2 + |Vus|2 + |Vub|2 ~ |Vud|2 + |Vus|2  1 – D Can test if D = 0 at level: from super-allowed nuclear b-decays: 2|Vud|dVud = from semileptonic kaon decays: |Vus|dVus = Extract |Vus| from Kl3 decays. EM effects must be included: G(K  pℓn(g))  |Vus f+K0p-(0) |2 I(lt) SEW(1 + dEM + dSU(2) ) d|Vus| dG dI(lt) df+K0p-(0) Relative uncertainty: =   |Vus| G I(lt) f+K0p-(0) Extract |Vus| from (K())/(()) ratio. Dominated by the theoretical uncertainity on the fK/f evaluation. KLOE can measure all experimental inputs: branching ratios, lifetimes, and form factors.

3 Outline - DAFNE and KLOE
- Measuring absolute Branching Ratios at a f-factory - Vus related results on: K short: BR(KSe3), KSe3 form factor, BR(KSm3) K long: BR(KLℓ3), tL direct measurement and from BR=1, KLℓ3 form factors Charged kaons: t, BR(Kℓ3), BR(K+m2) - Vus from KLOE results - Unitarity test

4 The DAFNE e+e collider
Collisions at c.m. energy around the f mass: s ~ MeV Angle between the beams at crossing: acrs 12.5 mrad Residual laboratory momentum of f: pf ~ 13 MeV/c Cross section for f peak: sf ~ 3.1 mb Grand total (2001/5): L = 2.5 fb-1. L peak=1.3×1032 cm-2s-1. Results presented in this talk from 2001/2 data: L = 450 pb-1. KLOE plots: end 2005

5 The KLOE detector Large cylindrical drift chamber
Lead/scintillating-fiber calorimeter. Superconducting coil: 0.52 T field. He/IsoC4H10 90/10 drift chamber 4m-, 3.75m-length, all-stereo sp/p = 0.4 % (tracks with q > 45°) sxhit = 150 mm (xy), 2 mm (z) sxvertex ~1 mm Lead-Scintillating fiber calorimeter sE/E = 5.7% /E(GeV) st = 54 ps /E(GeV)  50 ps (relative time between clusters) PID capabilities sL(gg) ~ 2 cm (p0 from KL  p+p-p0)

6 K physics at KLOE - tagging
KSKL (K+K-) produced from f are in a pure JPC = 1-- state: f decay mode BR K+K- 49.1% KSKL 34.1% f KS, K+ KL, K- Observation of KS,L signals presence of KL,S ; K+, signals K ,+ Allow precise absolute branching ratio measurement, by means of a tag technique: BR = (Nsig/Ntag)(1/esig), This relies on the capability of selecting a tag kaon independently on the decay mode of the other. In fact some dependency on signal mode exists: BR = (Nsig/Ntag) (1/esig) (eTageTag(sig)). Tag bias: carefully measured using MC and data control samples. K- m- K+ p+ g

7 Tagged KL and KS “beams”
KL tagged by KS  p+p- vertex at IP Efficiency ~ 70% (mainly geometrical) KL angular resolution: ~ 1° KL momentum resolution: ~ 1 MeV KS  p+p- KL  2p0 KS tagged by KL interaction in EmC Efficiency ~ 30% (largely geometrical) KS angular resolution: ~ 1° KS momentum resolution: ~ 1 MeV KL “crash” = 0.22 (TOF) KS  p-e+n

8 Measurement of BR(KS  pen)
- Kinematic cuts to reject background from KS  pp - e/p ID from TOF: identifies charge of final state Determine number of signal counts by fitting Emiss(pe) - pmiss data distribution to a linear combination of MC spectra for signal and bkg (MC includes peng and ppg processes). Event selection: Normalize using KS  pp events in same data set. Final result: Accepted by PLB BR(p-e+n) = (3.528  0.062)  10-4 BR(p+e-n) = (3.517  0.058)  10-4 BR(pen) = (7.046  0.091)  10-4 BR(pen) [KLOE ’02, 17 pb-1]: (6.91  0.34  0.15)  10-4 l+ = ( 33.9  4.1 )  10-3

9 KS  pmn: first observation
• Measurement never done before • More difficult than KSe3: 1) Lower BR: expect 410-4 2) Background events from KS  pp, p  mn: same PIDs of the signal • Event counting from the fit to Emiss(pm) -Pmiss distribution:  3% stat error • Efficiency estimate from KLm3 early decays and from MC + data control samples.  Data KS  m-p+n + ppg + pp -40 -20 20 40 Emiss(pm)-Pmiss (MeV)

10 Dominant KL branching ratios
Absolute BR measurements to 0.5-1% from ’01-’02 data set (328 pb-1) KL tagged by KS  p+p- : 13106 for the measurement 4106 used to evaluate efficiencies BR’s to pen, pmn, and p+p-p0: KL vertex reconstructed in DC PID using decay kinematics Fit with MC spectra including radiative processes and optimized EmC response to m/p/KL BR to p0p0p0: Photon vertex reconstructed by TOF using EmC (3 clusters) Erec = 99%, background < 1% (7% of the sample) Lesser of pmiss-Emiss in pm or mp hyp.

11 Dominant KL BR’s and KL lifetime
Errors on absolute BR’s dominated by error on tL, via the geometrical efficiency (eFV) eFV BR(pen + pmn + p+p-p0 +3p0)KLOE + BR(p+p- + p0p0)PDG’04 =  l(KL) Using the constraint BR(KL) = 1 we get: BR(KL e() ) =  stat  syst ~ 8105 events BR(KL () ) =  stat  syst ~ 5105 events BR(KL 3) =  stat  syst ~ 7105 events BR(KL () ) =  stat  syst ~ 2105 events BR, misura diretta: stat=stat + syst-stat dell’articolo; syst=syst+corr-syst dell’articolo PLB608(2005) 199 Published tL=  0.17  ns

12 Direct measurement of KL lifetime
× 102 Events/0.3 ns Measure using KL  p0p0p0 Require  3 g’s e(LK) ~ 99%, uniform in L sL(gg) ~ 2.5 cm Background ~ 1.3% Use KL π+π-π0 to determine: - EmC time scale - Photon vertex efficiency PK = 110 MeV Excellent lever arm for lifetime measurement ns cm 0.37 lL KLOE 400 pb-1: 107 KL  p0p0p0 evts tL =  0.17  0.25 ns Published PLB626(2005) 15 L/bgc (ns) Average with result from KL BR’s: tL =  0.23 ns Vosburg, ’72: tL = ± 0.44 ns

13 KLe3 form factor slopes l+
Data divided into 14 periods Good stability of results Good agreement for e+p-, p-e+ l+ period Needed for evaluation of phase-space integrals (extraction of Vus) Fit of momentum transfer spectrum with different hypothesis on form factor f+(t)/ f+(0): Linear: 1 + l+t Quadratic: 1 + l+ t/mp+ + 1/2 l+ (t/mp+)2 Pole model: MV2/(MV2-t), Taylor exp. with l+=(mp/MV)2, l+=2 l+2 o.5/1.6 328 pb-1, 2  106 Ke3 decays t measured from p and KL momenta: st/mp2 0.3 Kinematic cuts + TOF PID to reduce background ( ~ 0.7% final contamination ) Separate measurement for each charge state (e+p-, p+e-) to check systematics

14 KLe3 form factor slopes: result
Linear fit: l+ c2/dof e+p  /181 p+e  /181 All  /363 l+ = (28.6  0.5  0.4)  10-3 Quadratic fit: l+103 l+ c2/dof e+p   /180 p+e   /180 All   /362 l+ = (25.5  1.5  1.0)  10-3 l+ = ( 1.4  0.7  0.4)  10-3 Correlation: r(l+, l+) = -0.95 Pole model: mV = 870(7) MeV (*) ISTRA+ mp/mp0 correction 25.5 +/- 1.8, fractional error 7% 1.4+/-0.8 fractional error 57% Integrale spazio delle fasi: Pole model (world av.): (11); Quadratico (world av.): (13) Pole model (KTev): (14); Quadratico (KTeV) = (32) Pole model (KLOE): (16); Quadratico (KLOE) = (29) Phase space integral, Pole model versus Quadratic parameterization: KLOE: 0.5 per mil difference KTeV: 6 per mil difference. Accepted by PLB

15 Measurement of the K lifetime
Two different methods to measure t allow cross checks on the systematic error. Common to both methods: Tag events with Km2 decay Identify a kaon decay vertex in the fiducial volume Tag(Km2) 1st method: obtain t from the K decay length Measure the kaon decay length taking into account the energy loss: tK = i Li/(bigic) Tracking efficiency and resolution measured on data by means of neutral vertex identification. Fit of the tK distribution. KLOE preliminary: t=  0.044Stat  0.065Syst ns 2nd method: obtain t from the K decay time Use only Kp2 decays Use tag information to estimate the T0 i.e. the fK+K time. Measure the kaon decay time: tK = (tg – Rg/c –T0)gK, using the p0 clusters Lorentz factor gK: slowly changing along the kaon path

16 K semileptonic decays
Tag using kaon 2 body decays. 4 independent samples: K+m2, K+p2, K-m2, and K-p2; allow to keep the systematic effects due to the tag selection under control. Obtain number of signal events from a constrained likelihood fit of a m2 data distributions from ToF measurements. Non semileptonic events are rejected using kinematical cuts; the residual background is about 1.5% of the selected Kl3 sample and has the mp2 signature. Measure selection efficiency on MC and correct for Data/MC differences. Ev/(14MeV)2 K nucl.int. Kpp0p0 Kpp0 MC

17 Measurement of BR(Kℓ3)
Perform the BR measurement on each tag sample separately normalizing to tag counts in the same data set. Averages carefully calculated taking correlations into account: Ev/(14MeV)2 KLOE preliminary: BR(Ke3) = (5.047  0.019Stat  0.039Syst-Stat  0.004SysTag)×10-2 BR(Km3) = (3.310  0.016Stat  0.045Syst-Stat  0.003SysTag)×10-2 MeV2 Fractional accuracy of 0.9% for Ke3, 1.4% for Km3. c2/DoF for the 4 independent-tag measurements: Ke3: 3.20/3, P(c2> cM2)  36% Km3: 5.32/3, P(c2> cM2)  15% The error is dominated by the error on Data/MC efficiency correction and the systematics due to the signal selection efficiency is under evaluation. Ke3, Km3; BR(Ke3) = / ; BR(Km3) = / (Ricalcolati il 22 febbraio 2006 a partire dagli errori scritti nella trasp, ripresi dalla memo p. 57) MeV2

18 Measurement of BR(K++())
Tag from K--. 2002 data set: 1/3 used for signal selection, 2/3 used as efficiency sample Subtraction of p0 identified background. Count events in (225,400) MeV window of the momentum distribution in K rest frame (p hypothesis) Selection efficiency measured on data. Radiated g acceptance measured on MC. BR(K+  m+n(g)) =  stat.  syst. Published PLB632(2006) 76 (K())/(())  |Vus|2/|Vud|2fK2/f2 From lattice calculations: fK /f =1.198(3)(+165) (MILC Coll. PoS (LAT 2005) 025,2005)

19 Vus from KLOE results (BR’s and tL)
Slopes: l+ = (30) l+ = (3) KLe3 KLm3 KSe3 Ke3 Km3 BR 0.4007(15) 0.2698(15) 7.046(91)×10-4 (46) (40) t 50.84(23) ns 89.58(6) ps 12.384(24) ns (Pole model: KLOE, KTeV, and NA48 average) l0 = (95) (KTeV and, Istra+ average) dal Perl di Matt con i numeri di Paolo Franzini from Vud and unitarity Vusf0 = / ; from Kl3 Vusf0 = / ; Vus = / Vusxf+(0) with pole model, Tau_L KLOE = (48) i.e (5) Using as pole masses: Mv=876.7(5.1 )MeV, Mp=1182(38)MeV c2/dof = 1.9/4 From unitarity f+(0)=0.961(8), Leutwyler and Roos Z.Phys. C25, 91, 1984 Vud= (27), Marciano and Sirlin Phys.Rev.Lett ,2006 Vus×f+(0) = (22)

20 Vus and Unitarity <Vus×f+(0)>WORLD AV. = 0.2164(4) Vus f+(0)
tL = 50.99(20) ns, average KLOE-PDG Including all new measurements for semileptonic kaon decays (KTeV, NA48, E865, and KLOE) plot: F.Mescia courtesy Questa e` quella buona! Average KLOE+KTeV+NA48+E865 Vus(Mescia) =0.2164(4) <Vus×f+(0)>WORLD AV. = (4) From unitarity f+(0)=0.961(8), Leutwyler and Roos Z.Phys. C25, 91, 1984 Vud= (27), Marciano and Sirlin Phys.Rev.Lett ,2006 Vus×f+(0) = (22)

21 The Vus- Vud plane Inputs: Vus = 0.2254  0.0020
Kl3 KLOE, using f+(0)=0.961(8) Vud =  Marciano and Sirlin Phys.Rev.Lett ,2006 Vus/Vud =  Km2 KLOE (K())/(())  |Vus|2/|Vud|2fK2/f2 Fit results, P(c2) = 0.66: Vus =  Fit result assuming unitarity, P(c2) = 0.23: Vus =  unitarity Vud from Fermi super-allowed beta decays, valore di Vud=.97377(27) verificato in Marciano hep-ph/ , pubbl. Phys.Rev.Lett. 96:032002 Vus from: Kl3 e tauL KLOE NEW(24feb2006) Vus = (195) Kl3 e tauL AVE NEW(24feb2006) Vus = (194) Fit1 a due parametri: P(chi2) = 66% Fit2 a un parametro+unitarieta`: P(chi2) = 23%

22 Vus at KLOE - Conclusions
“All” kaon semileptonic branching ratios measured with a fractional accuracy accuracy ranging from 0.4% to 1.4%; the measurements are completely inclusive: Kℓ3(g). First direct measurement of BR(KS  pmn) coming soon with a statistical accuracy of 3%. Two independent measurements of tL: 0.5% fractional accuracy. KLe3 form factors: pole model. Significant contribution to the determination of Vus f+(0) to 0.2% 0.3% fractional accuracy on BR(Km2(g)) measurement Independent determination of Vus at 0.7% level, dominated by theoretical uncertainy. Preliminary result on K lifetime. Perspectives with 2.5 fb-1 of collected data: Fractional accuracy of < 1% on the BR for KS  pen and for Kℓ3 More and better measurements of form-factor slopes (Ke3 and Km3). Measurement of BR(KS  pmn), accuracy < 2%

23 the “young” physicists of KLOE
Thank you, Paolo! Photos: S. Chi and P. Valente courtesy the “young” physicists of KLOE

24 Spares slides

25 KLe3 form factor slopes: result
Linear fit: l+10-3 c2/dof e+p  /181 p+e  /181 All  /363 l+ = (28.6  0.5  0.4)  10-3 Quadratic fit: l+ l+10-3 c2/dof e+p   /180 p+e   /180 All   /362 l+ = (25.5  1.5  1.0)  10-3 l+ = ( 1.4  0.7  0.4)  10-3 Correlation: r(l+, l+) = -0.95 Pole model: mV = 870(7) MeV Pole model versus Quadratic parameterization: 0.5 per mil difference in phase space integral, Ie. 25.5 +/- 1.8, fractional error 7% 1.4+/-0.8 fractional error 57% Integrale spazio delle fasi: Pole model (world av.): (11); Quadratico (world av.): (13) Pole model (KTev): (14); Quadratico (KTeV) = (32) Pole model (KLOE): (16); Quadratico (KLOE) = (29) (*) ISTRA+ mp/mp0 correction

26 KS  pen: Signal extraction
Fit distributions of 5 variables in data with various MC sources Close kinematics: Emiss(pe) - pmiss = 0 MC includes peng and ppg processes dPCA = PCA1 – PCA2 eliminates p  m kinks and badly reconstructed tracks Data MC fit pen pp, p  m ppg pbadp ppbad other -50 50 100 200 300 400 500 600 700 Emiss(pe) - pmiss (MeV) -100 -150 Evts/MeV dPCA (cm) -4 4 8 -8 100 200 300 400 500 Evts/0.2cm PCA2 PCA1 Tagging methods, accuracy on tagged beam momentum Beta of the klong cluster instead of crash

27 Comparing form factor models
f+(0) = 0.961(8) from Leutwyler and Roos tL = 50.99(20) ns, average KLOE-PDG Form factors: average KLOE, KTeV, Istra+, NA48 - Quadratic parameterization l+ =  l+ =  l0 =  - Pole model l+ =  MV =  5.1 MeV l0 =  MP = 1182  38 MeV Vus f+(0) plot: F.Mescia courtesy Vus = / ; aggiungere frase su coerenza delle misure con il modello polare Quadratic paramet. Pole model

28 Vus at KLOE – summer 2005 Using: f+(0) = 0.961(8) from Leutwyler and Roos KL lifetime from KLOE: tL = 50.84(23) ns All BR’s from KLOE: KLe3 KLm3 KSe3 Ke3 Km3 BR 0.4007 0.2698 0.0505 0.0331 dBR 0.0018 0.0012 0.0004 0.0005 Usare plot nuovo di Federico Mescia Fitting the 5 |Vusf+(0)| KLOE determinations: 2/dof=1.7/4 Using also KTeV inputs, Vusf+(0) becomes (4)


Download ppt "B. Sciascia, INFN/Frascati for the KLOE collaboration"

Similar presentations


Ads by Google