Download presentation
Presentation is loading. Please wait.
1
Critical Chain Project Management
BCS Nottingham & Derby Winter School 2006
2
Steven Wray, BA, MBA, MBCS, C Eng
Phone: web:
3
What makes a Project ? One end-point
At least two tasks, linked by dependency Significant inherent unpredictability in how long the tasks will take.
4
What do we want from Project Management ?
5
What do we want from Project Management ?
Reliable on time in full to budget delivery performance More revenue, more Profit, happy customers A stable plan More Productive use of resources Simple, objective measures of Project progress Shorter meetings, better informed stakeholders - less waste, more productivity Simple, objective measures of Project health status Shorter meetings, better informed stakeholders - less waste, more productivity Clear signals for when corrective action is - and is not - necessary Better directed recovery efforts - less waste, more productivity Direction for ongoing improvement efforts The future brings more revenue, more profit, happier customers than the present
6
What is our normal experience from today's way of Project Management ?
7
What is our normal experience from today's way of Project Management ?
Reliable on time in full to budget delivery performance ? Or A continuous struggle with time, cost and scope ? A stable plan Or Repeated rescheduling ? Simple, objective measures of Project progress ? Or Clarity at the start and end, thick fog in between ? Simple, objective measures of Project health status ? Or Subjective assessments compounded by human factors ? Clear signals for when corrective action is - and is not - necessary ? Or Intervening too much too early, and too little too late ? Direction for ongoing improvement efforts ? Or "We'll improve our methods when things get better"
8
'Normal' Practice in the planning phase
We identify the tasks in the Project and specify the resources needed for each one We allocate to each task sufficient time that we are confident will allow it to be completed with those resources. That is, the time the task should take on average, plus some contingency to give us the confidence we seek We apply task dependencies, and work out the longest path of tasks in the Project The time along this path is the time-line of the Project
9
Normal practice in the execution phase
As long as every task completes on time (within its contingency), its successors will be started on time As soon as any task finishes late (outside its contingency), its successors will start late, and this normally means they will finish late In order to rescue a Project which shows any lateness, we have to squeeze the remaining tasks in the Project Typically we have to compromise on time, cost or scope and reschedule
10
The Estimating Dilemma
If I allow more time for every task in the plan, each task is less likely to be late, but the Project end date will be later... If I allow less time, the end date will be earlier, but the Project is more likely to overrun BUT I have to deliver the Project on time
11
How long should we allow in the plan for a task ?
Some staff work more quickly than others Sometimes staff are distracted or interrupted Sometimes necessary resources are delayed Some staff are risk-averse in their commitments Some organisations reinforce risk-aversion
12
How long do we allow in the plan for a task ?
The average time the task ought to take an average performer who focuses on it PLUS The time we expect to be spent on distractions PLUS A contingency time to take account of: The spread between average and low performers Our uncertainty in the average time Our uncertainty in the time for distractions How risk-averse we are or have to be
13
Some simple maths If we set our estimates so that we are 90% sure that any one task will be completed on time If we have 20 tasks in our Project The Probability that all the tasks will be on time is: = 12% For 50 tasks, the Probability of all on time is: = 1%
14
Emphasising Doing things by the text-book, with 20 tasks, each of which we are 90% sure will complete on time, we have an 88% probability of being late for the Project With 50 tasks, its a lot worse: its a 99% probability of being late for the Project
15
What if we change our estimating to a 95% confidence level ?
NB This will inflate the time for every task maybe by % because we will need more contingency For 20 tasks the probability of being late is now 64% (was 88%) For 50 tasks we are late now 92% (was 99%) We have very much extended our Project time-line, and increased our chances of success from 12% to 36% for the small Project, and from 1% to 8% for the large Project
16
Surely, there's a better way...
Plan A - invest our energy in reducing the extent of the variability: Allowing longer in Project planning stage for preparing estimates Training staff in estimating Use of formal estimating methods Measuring progress (CSC tools) and feeding results back into estimating practice More detailed specifications Less flexibility over changes to specifications Training the staff better in their job content Using individual performance measures to identify poor performers Keeping projects short (c 6 months), breaking larger undertakings into several short Projects Doing this can help, but doesn't solve the problem
17
Plan B - Coping behaviours
Project Managers fight to be assigned the most viable Projects Project Managers fight for the best staff Project Managers fight to keep the Project scope down Project Managers exploit changes in scope to unduly extend timelines and budgets Project Managers sandbag Project plans to create headroom Project Managers quit long Projects well before the delivery date Project Managers disregard targets they know to be impossible Staff work double shifts in the final weeks / months Dumping the blame elsewhere Doing these may help the individual, but not the organisation
18
Plan C: Approach the problem in a different way
We can reduce variability, but we cannot eliminate it, because it is inherent to the nature of a Project We must manage the variability that remains
19
How we handle variability in Critical Chain
We do not build in any contingency at the Task level We move all the contingency to the Project level - we call this the Completion Buffer Individual Tasks can now be late without affecting the completion date of the Project The Project due date is protected as long as the accumulated lateness along any one chain is less than the completion buffer
20
What difference does this make to our probability of being late ?
Under 'normal' practice, if any task is later than its contingency allows, we have a problem Under Critical Chain, we only have a problem if the total lateness exceeds the total contingency This second condition is much less likely than the first [ Law of averages / Central limit theorem] and increasingly so as the number of tasks increases
21
The Completion Buffer A Buffer is a block of time which protects a deliverable from being affected by delays upstream. The Completion Buffer protects the Project completion date Over the course of the Project we expect our buffers to be used up, in proportion to progress made
22
Scarcity of Resources In putting together the plan, we must take into account scarcity of resources In particular, if two tasks want exclusive use of the same resource, at the same time, they have to be staggered This affects the plan in a similar way to the task dependencies
23
Scarcity of Resources Task C depends on both A and B
Each task uses a different resource Task A – 10 d Task C – 10 d Task B – 10 d Project Time required - 20 d
24
Scarcity of Resources Task C depends on both A and B,
Both A and B need exclusive use of the same resource Task A – 10 d Resource conflict Task C – 10 d Task B – 10 d Project Time required - 30 d
25
The Critical Chain We identify the longest chain of dependent tasks by resource through the Project - this is the Critical Chain, at the end we place the Completion Buffer The time taken to complete the Project is the time taken to complete the Critical Chain Any delay in the Critical Chain delays the Project completion
26
Completion Buffer Task A Completion Buffer Task C Task B
Committed end date
27
In Practice Project duration held constant The buffer is 25-33% of
Task A Task C Task B Project duration held constant Task A Completion Buffer Task C Task B The buffer is 25-33% of chain length
28
Feeding Chains All the other chains of tasks we call Feeding Chains , because each one at some point feeds into the Critical Chain Every task in the Project is part of either the Critical Chain or a Feeding Chain
29
Feeding Buffers We must not allow anything to delay the Critical Chain
We must protect the critical chain from being delayed by lateness in the Feeding Chains We start the feeding chains a little early, and insert a block of time to decouple the Critical Chain from each Feeding Chain We call these blocks of time Feeding Buffers
30
Feeding Buffers Task A Completion Buffer Task C Task B FB Task D
31
Planning Phase Summary
There is no contingency at task level The Project due date is protected by the a block of time called the Completion Buffer The Critical Chain is the longest chain of tasks through the Project All other chains of tasks are Feeding Chains We place Feeding Buffers to decouple the Critical Chain from the feeding chains
33
Execution phase.... We have a great plan - what can happen in execution ?
34
Critical Chain in the Execution phase....
No multi-tasking - when someone starts a task they stick to it until it's completed
35
Bad Multi-tasking Whenever I put down one task and pick up another, I lose productive time How much time is lost switching depends on how deep or shallow the task in hand is Putting a stop to multi-tasking in effect creates extra capacity
36
More Bad Multi-tasking
If we have two people, each available 50% to our Project, and they have to work together, they are effectively 25% available If we have four such people, it's effectively 6%, so we'll wait on average 8 working days to get them together for half a day Real-life case: Ten team leaders, each on 50% availability: Out of two Project meetings held, 3 came to both, 5 to one or the other, 2 to neither
37
Very Bad Multi-tasking
When someone stops doing a task on the Critical Chain, and starts doing something else, they are delaying the entire Project
38
Critical Chain in the Execution phase....
No multi-tasking - when someone starts a task they stick to it until it's completed We begin each task as soon as resource is available and prerequisite tasks are complete The timings in the plan are for planning, not a commitment on execution
39
Critical Chain in the Execution phase....
No multi-tasking - when someone starts a task they stick to it until it's completed We begin each task as soon as resource is available and prerequisite tasks are complete We finish each task as soon as we can Early finishes on Critical Chain tasks bring forward the whole Project Early finishes on Feeding Chains increase the protection of the Critical Chain Sometimes we call these three together 'Roadrunner' style
40
Summarising Practical differences...
Planning phase: The Project is analysed into the Critical Chain and Feeding Chains Contingency is aggregated into a Completion Buffer protecting the Project end-date, and Feeding Buffers protecting the Critical Chain Execution Phase No Multi-tasking Early finish / allowing early start of following tasks Subordination to the Critical Chain
41
Measures and Management
How do we know how the Project is doing ?
42
Measures and Management
Making less progress than planned will eat into the Completion buffer Making more progress than planned will add to the Completion buffer A C B At day 5, task A has 8 days remaining (of 10) - Completion Buffer is eroded by 3 days Task D is completed - no effect on Completion Buffer D
43
Measures and Management
Question 1: How many days work until the Project is completed ? Answer = the number of days left on the Critical Chain It is the time on the Critical Chain that determines the time required to complete the Project
44
Measures and Management
Question 2: How certain are we about the answer to Question 1 ? Answer = the proportion of the Completion Buffer that we have left, compared to the proportion of the Critical Chain still to do The Completion Buffer protects the end date. The less (more) it is eroded, the less (more) the end date is at risk
45
Corrective Action We compare the percentage of the Completion Buffer Remaining (%CBR) with the percentage of the Critical Chain Remaining (%CCR) We set trigger points for corrective action, for example: When the ratio %CBR / %CCR is 1or more, Project status is GREEN - Watch When %CBR / %CCR is between 1 and 2/3, Project status is AMBER - Prepare a recovery plan When %CBR / %CCR is less than 2/3, Project status is RED - Implement recovery plan
46
Measures in 2-D 0 % Completion Buffer Remaining 100 % 100 %
Critical Chain Remaining 0 %
47
Don't overreact to buffer erosion
We expect our buffer to be used up over the course of the Project Our date is not threatened if the buffer is used up in proportion to progress If we have 2/3 of the completion buffer left and only 1/3 of the Project to do we are doing fine Our date is threatened if the buffer is used up disproportionately If we have 2/3 of the Project still to do but have only 1/3 of the completion buffer left we have a problem
48
Measures Summary We have simple, objective measure of Project progress
We have a simple, objective measure of Project health status We have a simple rule for triggering - and not triggering - corrective action We can redefine the Project progress meeting as the Buffer Management Meeting
49
Buffer Management Meeting
Attendees: Project Manager, Project Sponsor / Owner, Task Managers, Resource Managers Agenda: Reminder of what tasks are on the Critical Chain. Review Project status ( % Critical Chain outstanding). Review Completion buffer status (Red, Amber, Green). If necessary, initiate corrective actions. Review Feeding buffers status (Red, Amber, Green). If necessary, initiate corrective actions. Review tasks in progress to ensure earliest completion in full. Review tasks not started to ensure earliest start where appropriate.
50
Using Buffer Management to drive ongoing improvement
Buffer Management measures are fact-based and objective Buffer Management meetings highlight buffer erosion / Project delays Preventing the causes of delay will speed up your Projects Your process of ongoing improvement is simply to eliminate the causes of delay by following up on the issues highlighted in Buffer Management meetings As your Projects run faster and more reliably, continue to eliminate more and more causes of delay
51
How Does Critical Chain help our Project Management ?
Aggregated contingency and 'Roadrunner' style Effective due-date protection and extra effective capacity More reliable on time in full to budget delivery performance Identification of Critical Chain and Feeding Chains Focus Buffers Flexibility A stable plan Buffer measures Objectivity and clarity Better focused meetings, better directed recovery efforts, better informed stakeholders, less waste and more productivity Less encouragement of 'coping behaviours‘ Buffer Management Focus for ongoing improvement efforts
52
Without CCPM If the plan is not based on the Critical Chain, it may be infeasible If the Critical Chain is not known, the Project Manager cannot focus on it Without contingency the plan is not robust If contingency is all in the task estimates, it's still not robust it’s just longer, and there is no sense of urgency Without feeding buffers, an early completion will not help the end date, because the next task has to wait for its other prerequisites With multi-tasking and interruptions > 25% capacity is wasted Interruptions on Critical or Feeding Chains delay Project Completion Measures are backward-looking or misdirect attention Improvement processes lack focus
53
Multi-Project Pipelines
The Goal is to maximise Project throughput over some timeframe The constraint is one of the resources available The pipeline can be overcommitted Resources can be used on the wrong Project Projects can delay one another
54
Multi-Project Pipelines
Starting point is that each Project has a fully defined CCPM plan, and We have a defined set of global resources Assumption that one of the resource constraints dominates the others over the timeframe (Pacing Resource) Execute a single pipeline plan which is feasible and robust
55
Example Which is the Pacing Resource ?
We run the engineering department of a manufacturing company making custom products Each product ordered is a new variation on a few standard designs Typically, for each product ordered, we spend 5 days on the specification, 10 days on the design, 2 days on the test plan, and 3 days on the manual We have 2 people who do specifications, 3 who do designs, one test planner and one manual-writer Which is the Pacing Resource ? How many Products can we deal with in a 50 day quarter ?
56
Example Specification: 2 x 50 = 100/5 gives 20 products
We run the engineering department of a manufacturing company making custom products Each product ordered is a new variation on a few standard designs Typically, for each product ordered, we spend 5 days on the specification, 10 days on the design, 2 days on the test plan, and 3 days on the manual We have 2 people who do specifications, 3 who do designs, one test planner and one manual-writer Specification: 2 x 50 = 100/5 gives 20 products Design: 3 x 50 = 150, 150/10 gives 15 products Test Plans: 1 x 50 / 2 = 25 products Manuals: 1 x 50 /3 = 17 products Design = Pacing Resource
57
Example What is the consequence if:
We run the engineering department of a manufacturing company making custom products Each product ordered is a new variation on a few standard designs Typically, for each product ordered, we spend 5 days on the specification, 10 days on the design, 2 days on the test plan, and 3 days on the manual We have 2 people who do specifications, 3 who do designs, one test planner and one manual-writer What is the consequence if: The test planner is off for two weeks ? One of the designers is off for two weeks ? The documentation task for a product overruns by 50% ? The design task for a product overruns by 50% ? The specification task for a product overruns by 50% ?
58
Answers Loss of output on the pacing resource has a permanent, pervasive effect Loss of output on the other resources has a temporary, local effect We need to protect the Pacing Resource
60
Planning the Pipeline Stagger Projects on the Pacing Resource
Buffer the Pacing Resource A feasible and robust due-date for each Project
61
Priorities in the pipeline
In order of net profit per hour of time on Pacing Resource In sequence of strategic priority Committed Projects first, then new Projects Look at the effects of different sequences
62
Product 793 Schedule Spec Design Test plan / Manual Pacing Resource Schedule RB RB RB Design 792 Design 793 Design 794 RB Product 794 Schedule Test plan / Manual Spec Design
63
Execution Phase Hierarchy of subordination:
Never interrupt the Pacing Resource Only interrupt a Critical Chain task to start the Pacing Resource Only interrupt a Feeding Chain task for a Critical Chain task
64
Measures in 2-D 0 % 3 5 Completion Buffer Remaining 2 4 1 100 % 100 %
Critical Chain Remaining 0 %
65
Buffer Management Management team (Project Managers, Resource Managers) looks at: Pacing Resource schedule Resource Buffer status Critical Chains vs Completion Buffers picture Resources: best resources allocated to most important Projects ? Pacing Resource tasks in Progress - early completions ? Pacing Resource tasks due to start - early starts ? Record buffer erosion to focus improvement effort
66
Summary - Multi- Project
Start with all Projects fully-defined in CCPM Identify Pacing Resource Load the pipeline by staggering Projects on the Pacing resource Buffer the Pacing Resource Apply hierarchy of subordination Manage by Buffer Management Use Buffer Management to drive improvement
67
Without CCPM If we haven't identified the Pacing Resource:
our pipeline may be infeasible we will waste capacity Without a resource buffer, the pipeline won't be robust Without good measures, management is unfocused or wrongly focused Without Buffer Management, improvement is unfocused
68
In Practice The logic of CCPM works
Many success stories: A50, Lucent, Phillips, US Navy Implementation is not a trivial undertaking As CCPM brings Projects under control, the constraint moves to management Aggressive reductions in cycle time are both possible and necessary
69
Books "Critical Chain" by Eli Goldratt 0-88427-153-6
"Critical Chain Project Management" by Lawrence P Leach ISBN "Enterprise-Focused Management" by Ted Hutchin ISBN
70
Questions ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.