Download presentation
Presentation is loading. Please wait.
1
Real Air-time Occupation by Beacon and Probe
January 2012 doc.: IEEE /1413r3 January 2012 Real Air-time Occupation by Beacon and Probe Date: Authors: Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
2
January 2012 doc.: IEEE /1413r3 January 2012 Abstract This document shows retry numbers of Probe Response as the answer for discussion in Atlanta. (Slide 9) Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
3
January 2012 doc.: IEEE /1413r3 January 2012 Motivation 3G mobile operators have demand to offload their data traffics to WLAN network. Especially, they have higher demands for the locations where many people meet or stay for data offloading, because high data traffics occur at those locations. It’s highly expected that FILS will realize transition from 3G to WLAN in very short time. Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
4
Real world (1) Number of Smart-phone is increasing.
January 2012 doc.: IEEE /1413r3 January 2012 Real world (1) Number of Smart-phone is increasing. iPhone, Android, Windows-phone, Blackberry… Smart-phone holders always touch its screen. While its screen is activated (backlight turned on), Smart-phone starts searching surrounding WLAN-APs. Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
5
January 2012 doc.: IEEE /1413r3 January 2012 Real world (2) Many Smart-phone holders are in the crowded commuter train. Imagine what happens when the train arrives at the station. Air monitoring was executed at a train station in Tokyo. Results are explained in the following slides. Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
6
Conditions Time/Date: Around 18:00 / October 11(Tue), 2011
January 2012 doc.: IEEE /1413r3 January 2012 Conditions Time/Date: Around 18:00 / October 11(Tue), 2011 Location: Shinjuku station (Keio line), Tokyo Monitoring CH: 6CH(2,437MHz) Monitoring period: 300 seconds (5 minutes) <Equipment> Thinkpad X200 Windows XP USB Wireless Monitor Adoptor (Air Pcap NX) Wireshark Measured CH Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
7
Result Observed frames January 2012 Frames Bytes Count % Beacon 13,871
doc.: IEEE /1413r3 January 2012 Result Observed frames Frames Bytes Count % Beacon 13,871 15.05 1,689,040 9.82 Probe Request 7,139 7.75 989,797 5.75 Probe Response 24,687 26.79 2,941,331 17.10 Other 46,462 50.42 11,581,634 67.33 Total 92,159 17,201,802 Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
8
Result (cont.) Frames Bytes Time occupation is more important.
January 2012 doc.: IEEE /1413r3 January 2012 Result (cont.) Frames Bytes Time occupation is more important. Doc. IEEE /1031r0 was referred for time occupation analysis. Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
9
Transmission Rate January 2012 January 2012
doc.: IEEE /1413r3 January 2012 Transmission Rate Rate [Mbps] Beacon Probe Request Probe Response Others Frames % 1 13,861 99.93 6,547 91.71 24,606 99.67 12,956 27.89 2 0.00 21 0.29 4 0.02 504 1.08 6 13 0.18 7 0.03 467 1.01 113 0.24 9 3 0.04 230 0.50 11 0.01 510 7.14 15 0.06 2,766 5.95 12 288 0.62 18 0.10 341 0.73 24 0.05 13,793 29.69 36 1,309 2.82 48 10 0.14 1,953 4.20 54 20 0.28 31 0.13 11,742 25.27 Total 13,871 7,139 24,687 46,462 Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
10
Transmission Rate (cont.)
January 2012 doc.: IEEE /1413r3 January 2012 Transmission Rate (cont.) Rate [Mbps] Beacon Probe Request Probe Response Others Bytes % 1 1,688,640 99.98 838,510 84.72 2,849,896 96.89 871,812 7.53 2 0.00 10,019 1.01 5,257 0.18 466,650 4.03 6 12,633 1.28 10,710 0.36 531,043 4.59 1,590 0.16 1,530 0.05 127,094 1.10 9 2,631 0.27 301,819 2.61 11 80 76,565 7.74 13,848 0.47 687,560 5.94 12 3,060 0.31 6,120 0.21 215,459 1.86 18 10,198 1.03 8,212 0.28 287,119 2.48 24 280 0.02 3,154 0.32 5,279 805,136 6.95 36 4,590 967,971 8.36 48 13,509 1.36 2,259 0.08 1,285,716 11.10 54 40 17,928 1.81 32,100 1.09 5,034,255 43.47 Total 1,689,040 989,797 2,941,331 11,581,634 Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
11
Occupied Time Calculation (Beacon)
January 2012 doc.: IEEE /1413r3 January 2012 Occupied Time Calculation (Beacon) Occupied Time Beacon DIFS CW TX TIME aSlotTime: 20us aSIFSTime: 10us aPreambleLength: 144us aPLCPHeaderLength: 48bits aCWmin: 31 aCWmax: 1023 DIFS: 50us CW: 310us Occupied Time = ∑((DIFS + CW + aPreambleLength + aPLCPHeaderLength/DATARATE) * TotalFrames + (TotalBytes * 8/DATARATE)) = (( / 1.0) * 13,861 + (1,688,640 * 8 / 1.0) + (( / 11.0) * 2 + (80 * 8 / 11.0) + (( / 24.0) * 7 + (280 * 8 / 24.0) + (( / 54.0) * 1 + (40 * 8 / 54.0) = 21,165,613 us (7.06%) Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
12
Occupied Time Calculation (Probe Request)
January 2012 doc.: IEEE /1413r3 January 2012 Occupied Time Calculation (Probe Request) Occupied Time Probe Request DIFS CW TX TIME Occupied Time = ∑((DIFS + CW + aPreambleLength + aPLCPHeaderLength/DATARATE) * TotalFrames + (TotalBytes * 8/DATARATE)) = (( / 1.0) * 6,547 + (838,510 * 8 / 1.0) + (( / 2.0) * 21 + (10,019 * 8 / 2.0) + (( / 5.5) * 13 + (12,633 * 8 / 5.5) + (( / 6.0) * 2 + (1,590 * 8 / 6.0) + (( / 9.0) * 3 + (2,631 * 8 / 9.0) + (( / 11.0) * (76,565 * 8 / 11.0) + (( / 12.0) * 2 + (3,060 * 8 / 12.0) + (( / 18.0) * 7 + (10,198 * 8 / 18.0) + (( / 24.0) * 4 + (3,154 * 8 / 24.0) + (( / 48.0) * 10 + (13,509 * 8 / 48.0) + (( / 54.0) * 20 + (17,928 * 8 / 54.0) = 10,754,454us (3.58%) Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
13
Occupied Time Calculation (Probe Response)
January 2012 doc.: IEEE /1413r3 January 2012 Occupied Time Calculation (Probe Response) Occupied Time Probe Response ACK DIFS CW TX TIME SIFS TX TIME aSlotTime: 20us aSIFSTime: 10us aPreambleLength: 144us aPLCPHeaderLength: 48bits aCWmin: 31 aCWmax: 1023 DIFS: 50us CW: 310us ACKRate: 1Mbps ACKLength: 14Bytes Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
14
Occupied Time Calculation (Probe Response) (Cont.)
January 2012 doc.: IEEE /1413r3 January 2012 Occupied Time Calculation (Probe Response) (Cont.) Occupied Time = ∑((DIFS + CW + aPreambleLength + aPLCPHeaderLength/DATARATE +aSIFSTime + aPreambleLength + aPLCPHeaderLeangth / ACKRATE + ACKLength * 8 / ACKRATE) * TotalFrames + (TotalBytes * 8/DATARATE)) = (( / /1.0+14*8/1.0) * 24,606 + (2,849,896 * 8 / 1.0) + (( / / * 8 / 1.0) * 4 + (5,257 * 8 / 2.0) + (( / / * 8 / 1.0) * 7 + (10,710 * 8 / 5.5) + (( / / * 8 / 1.0) * 1 + (1,530 * 8 / 6.0) + (( / / * 8 / 1.0) * 1 + (1,530 * 8 / 9.0) + (( / / * 8 / 1.0) * 15 + (13,848 * 8 / 11.0) + (( / / * 8 / 1.0) * 4 + (6,120 * 8 / 12.0) + (( / / * 8 / 1.0) * 7 + (8,212 * 8 / 18.0) + (( / / * 8 / 1.0) * 6 + (5,279 * 8 / 24.0) + (( / / * 8 / 1.0) * 3 + (4,590 * 8 / 36.0) + (( / / * 8 / 1.0) * 2 + (2,259 * 8 / 48.0) + (( / / * 8 / 1.0) * 31 + (32,100 * 8 / 54.0) = 44,215,439us (14.74%) Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
15
Occupied Time Calculation Result
January 2012 doc.: IEEE /1413r3 January 2012 Occupied Time Calculation Result Packet type Occupancy rate (%) Occupied time (sec) Beacon 7.06 21.17 Probe Req. 3.58 10.75 Probe Res. 14.74 44.22 Others 74.62 223.86 Total 100.00 300.00 Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
16
Retry of Probe Response
January 2012 doc.: IEEE /1413r3 January 2012 Retry of Probe Response Probe Response frames: 24,687 Retry frames in these: 12,274 (49.7%) Almost all retry frames are transmitted in a few msec after the original transmission. The percentage of retry frames may be increased in more congested situation. See Slide 17 for detailed example. Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
17
Example of retry frames (Probe Response)
January 2012 doc.: IEEE /1413r3 January 2012 Example of retry frames (Probe Response) Sequence Number No. Time Source Destination Info SN 1 XXXX_c5:83:c1 XXXX:16:4c:f2 Probe Response, SN=2066, FN=0, Flags=..m.....C, BI=100, SSID=ABC 2066 2 0.5054 XXXX_c5:83:c6 Probe Response, SN=2067, FN=0, Flags= C, BI=100, SSID=\000"" 2067 3 Probe Response, SN=2067, FN=0, Flags=....R...C, BI=100, SSID=\000"" 4 5 XXXX:c5:58:91 Probe Response, SN=71, FN=0, Flags= C, BI=100, SSID= 71 6 XXXX_c5:83:c0 Probe Response, SN=2068, FN=0, Flags=..m.....C, BI=100, SSID=XYZ 2068 7 Probe Response, SN=2069, FN=0, Flags=..m.....C, BI=100, SSID=ABC 2069 8 Probe Response, SN=2069, FN=0, Flags=..m.....C, BI=101, SSID=ABC 9 Probe Response, SN=2069, FN=0, Flags=..m.....C, BI=102, SSID=ABC 10 Probe Response, SN=2070, FN=0, Flags= C, BI=100, SSID=\000"" 2070 11 XXXX:42:60:c4 Broadcast Probe Response, SN=3699, FN=0, Flags= C, BI=100, SSID= 3699 12 Probe Response, SN=72, FN=0, Flags= C, BI=100, SSID= 72 13 Probe Response, SN=72, FN=0, Flags=....R...C, BI=100, SSID= 14 Probe Response, SN=73, FN=0, Flags= C, BI=100, SSID= 73 15 Probe Response, SN=2071, FN=0, Flags=..m.....C, BI=100, SSID=XYZ 2071 16 Probe Response, SN=2071, FN=0, Flags=..m.....C, BI=101, SSID=XYZ 17 Probe Response, SN=2071, FN=0, Flags=..m.....C, BI=102, SSID=XYZ 18 Probe Response, SN=2071, FN=0, Flags=..m.....C, BI=103, SSID=XYZ 19 XXXX:54:de:0a Probe Response, SN=74, FN=0, Flags= C, BI=100, SSID= 74 20 Probe Response, SN=74, FN=0, Flags=....R...C, BI=100, SSID= 21 22 23 Probe Response, SN=2080, FN=0, Flags=..m.....C, BI=100, SSID=XYZ 2080 24 Probe Response, SN=2081, FN=0, Flags=..m.....C, BI=100, SSID=ABC 2081 25 Probe Response, SN=2082, FN=0, Flags= C, BI=100, SSID=\000"" 2082 Retry Retry Retry Retry Retry Retry Retry Retry Retry Retry Retry Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
18
January 2012 doc.: IEEE /1413r3 January 2012 Conclusion Because of WLAN enabled devices increasing, especially Smart-phones, WLAN air circumstances are getting more crowded. In this packet monitoring, probe responses existed times more than probe requests. Retry transmissions of Probe Response are frequently happened. To see the benefits of effective FILS, improvement of air circumstances would be needed by reducing unnecessary packet exchanges. Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
19
References doc. IEEE802.11-11/1031r0 January 2012
Katsuo Yunoki, KDDI R&D Laboratories Katsuo Yunoki, KDDI R&D Laboratories
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.