Download presentation
Presentation is loading. Please wait.
Published byEstelle Perrot Modified over 6 years ago
1
VDD VDD Vo<VG6+|Vt6| =VDD - |Vtp| - 2Veff M7 M5 M8 M6 vo Vo>Vbb-Vtn >Vicm-Vtn+Veff M3 M4 CL Vbb M1 M2 vin+ vin-
2
VDD VDD Vo<VG6+|Vt6| =VDD - |Vtp| - 2Veff M7 M5 M8 M6 vo Vo>Vbb-Vtn >Vicm-Vtn+Veff M3 M4 CL Vbb M1 M2 vin+ vin-
3
VDD VDD M7 M5 Make I1R=Veff or 1.5Veff M8 Vo < VDD - 2Veff M6 vo M3 M4 CL Vbb Vo > Vicm-Vtn+Veff M1 M2 vin+ vin-
4
M3 M1 vin+ Vo Vo
5
VDD VDD Vo Vo Folded cascode
6
VDD Vin CL Vbb flip up-down for I sources VDD M1 Vin CL M2 Vbb
7
VDD Vin+ CL Vin- Vb3 folded cascode amp Vb2 Vb1 Vb4 Vb5
8
Output swing range and input common mode range are now decoupled.
OSR: 2Veff to VDD-2Veff total: VDD-4Veff ICMR: 2Veff+Vt1 to VDD-Veff +Vt1 total: VDD-3Veff But, if Vic cannot exceed VDD, ICMR: 2Veff+Vt1 to VDD VDD-2Veff-Vt1
9
Miller equivalent circuit
I2 =Y(V2-V1) =Y(V2+V2/A) =(1+1/A)YV2 Y2=(1+1/A)Y Y Chapter 4 Figure 15 I1=I=Y(V1-V2) =Y(V1+AV2) =(1+A)YV1 Y1=(1+A)Y
10
The above is proven by assuming constant A.
But in reality, A depends on Y and connection. Correct use of Miller is quite tricky!
11
v2 = -Av1 v2 Agm1R2 This is for DC.
12
But this is missing the positive zero: z1 = +gm1/Cgd1
v1/vin=1/(1+sRs(Cgs1+(1+gm1R2 )Cgd1)) vo/v1= -gm1/(G2 + s(C2 +Cgd1)) Multiply: vo/vin= -gm1/{(G2 + s(C2 +Cgd1))(1+sRs(Cgs1+(1+gm1R2 )Cgd1))} But this is missing the positive zero: z1 = +gm1/Cgd1 Cgd1 A better approach: first set Rs=0, find TF from gate to vo, as we did before; then use Miller effect, find TF from vin to v1 (left circuit); then multiply together to get TF from vin to vo. vo/vin = (sCgd1 -gm1)/{(G2 + s(C2 +Cgd1))(1+sRs(Cgs1+(1+gm1R2 )Cgd1))}
13
g'm=gm1+gs11.2gm1 KCL at vo: -g’mvs+(vo-vs)gds+vo(GL+sC2)=0 vo/vs=(g’m+gds)/(gds+GL+sC2) ’
14
Zero value time constant:
If a TF=n(s)/d(s) has only real poles d(s)=(1+t1s)(1+t2s)(1+t3s)… =1+(t1+t2+t3+…)s + (t1t2+t2t3+…)s2+… For low frequency, s small, we have d(s) 1+(t1+t2+t3+…)s Hence the lowest freq pole is approximately p1 -1/(t1+t2+t3+…) This only good for low freq, and real poles.
15
Application: Perform series/parallel simplification For each remaining capacitor, find resistance it sees by: Short V-source, open I- source, open other caps teff = R1C1+R2C2+…
16
C2 is CL||Cdb1||Cdb2 R2 is rds1||rds2 Cgs1 sees Rs, C2 sees R2 For Cgd1, more complex.
17
Resistance seen by Cgd1 can be found by applying a test v3 across Cgd1, finding the resulting current i3, and using R3=v3/i3 R3 = R2 + (1+gm1R2)*Rs teff=RsCgs1+R2C2+R2Cgd1+ (1+gm1R2)*RsCgd1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.