Presentation is loading. Please wait.

Presentation is loading. Please wait.

Day 17: October 18, 2010 (Energy) Ratioed Logic

Similar presentations


Presentation on theme: "Day 17: October 18, 2010 (Energy) Ratioed Logic"— Presentation transcript:

1 Day 17: October 18, 2010 (Energy) Ratioed Logic
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 17: October 18, 2010 (Energy) Ratioed Logic Penn ESE370 Fall DeHon

2 Today Energy and Power Ratioed Gates Data dependence
Switching vs. Leakage Energy vs. Delay Ratioed Gates Correctness Performance Power Implications Penn ESE370 Fall DeHon

3 Data Dependent Activity
Consider an 8b counter What is activity, a, for: Low bit? High bit? Assuming random inputs (no glitching) Activity at output of nand4? Activity at output of xor4? Penn ESE370 Fall DeHon

4 Total Power Ptot = Pstatic + Psc + Pdyn Pdyn + Psc = a(½Cload+Csc)V2f
Ptot ≈ a(½Cload+Csc)V2f+VI’s(W/L)e-Vt/(nkT/q) Penn ESE370 Fall DeHon

5 Slow Down Ptot ≈ a(½Cload+Csc)V2f+VI’s(W/L)e-Vt/(nkT/q)
What happens to power contributions as reduce clock frequency? What suggest about Vt? Penn ESE370 Fall DeHon

6 ITRS 2009 Penn ESE370 Fall2010 -- DeHon Year of Production 2009 2010
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted) 54 45 38 32 27 24 21 18.9 16.9 15 13.4 11.9 10.6 9.5 8.4 7.5 Lg: Physical Lgate for High Performance logic (nm) [1] 29 22 20 18 17 15.3 14 12.8 11.7 10.7 9.7 8.9 8.1 7.4 EOT: Equivalent Oxide Thickness (nm) [2] Extended planar bulk 1 0.95 0.88 0.75 0.65 0.55 0.53 UTB FD 0.7 0.68 0.6 0.57 0.54 0.5 MG 0.77 0.67 0.64 0.62 0.59 Channel doping (E18 /cm3) [3] Extended Planar Bulk 3.7 4 4.5 5 5.7 6.6 0.1 Junction depth or body Thickness (nm) [4] Extended Planar Bulk (junction) 13 12 10.5 8.7 8 7.3 UTB FD (body) 7 6 5.5 5.1 4.7 4.3 3.9 MG (body) 7.6 6.4 5.8 4.8 4.2 EOTelec: Electrical Equivalent Oxide Thickness (nm) [5] 1.32 1.26 1.2 1.06 0.85 0.82 1.1 1.08 0.97 0.94 0.9 1.17 1.07 1.04 1.02 0.99 0.93 Cg ideal (fF/mm) [6] 0.76 0.73 0.72 0.71 0.63 0.58 0.47 0.45 0.48 0.42 0.39 0.37 0.35 0.32 0.3 0.28 Jg,limit: Maximum gate leakage current density (kA/cm2) [7] 0.83 1.3 1.4 1.5 1.7 1.9 2.1 2.2 2.5 2.7 2.9 Vdd: Power Supply Voltage (V) [8] P bulk/UTB FD/MG 0.87 0.84 0.81 0.78 0.66 Vt,sat: Saturation Threshold Voltage (mV) [9] 285 289 294 291 295 309 302 221 220 228 232 236 235 206 202 207 209 219 213 231 Isd,leak (nA/mm) [10] Bulk/UTB FD/MG 100 Mobility enhancement factor due to strain [11] 1.8 Effective Ballistic Enhancement Factor, Kbal [12] 1.12 1.19 1.34 1.42 1.59 1.69 1.79 2.01 Rsd: Effective Parasitic series source/drain resistance (Ω-µm) [13] 170 160 140 130 110 120 Id,sat: NMOS Drive Current (µA/µm) [14] 1,210 1,200 1,190 1,300 1,450 1,580 1,680 1,470 1,520 1,670 1,730 1,770 1,830 1,970 1,490 1,630 1,710 1,790 1,860 1,870 2,000 2,060 2,110 2,170 Equivalent injection velocity, vinj (107 cm/s) [15] 0.98 0.86 1.41 1.01 1.11 1.21 1.43 1.53 1.72 1.92 2.09 2.32 Cg fringing capacitance (fF/mm) [16] 0.24 0.25 0.26 0.23 0.17 0.19 0.18 Cg,total: Total gate capacitance for calculation of CV/I (fF/µm) [17] 0.96 0.8 0.61 0.46 Penn ESE370 Fall DeHon

7 ITRS 2009 45nm C0 = 0.045mm × Cg,total High Performance Low Power
Isd,leak 100nA/mm 50pA/mm Isd,sat 1200 mA/mm 560mA/mm Cg,total 1fF/mm 0.91fF/mm Vth 285mV 585mV C0 = 0.045mm × Cg,total Penn ESE370 Fall DeHon

8 High Power V=1V Csc = 0 Cload=22C0 ≈ 1 fF = 10-15F
(just for simplicity, typically <Cload) Cload=22C0 ≈ 1 fF = 10-15F WN = 2  Ileak = 9×10-9 A P=a(0.5×10-15) freq + 9×10-9 W Penn ESE370 Fall DeHon

9 Compare P=a(0.5×10-15) freq + 9×10-9 W a=0.2 P=10-16×freq + 9×10-9 W
For what freqs does leakage power dominate switching power? Penn ESE370 Fall DeHon

10 ITRS 2009 45nm C0 = 0.045mm × Cg,total High Performance Low Power
Isd,leak 100nA/mm 50pA/mm Isd,sat 1200 mA/mm 560mA/mm Cg,total 1fF/mm 0.91fF/mm Vth 285mV 585mV C0 = 0.045mm × Cg,total Penn ESE370 Fall DeHon

11 Reduce V What happens as reduce V?
Delay? Energy? Static Switching Ptot ≈ a(½Cload+Csc)V2f+VI’s(W/L)e-Vt/(nkT/q) Penn ESE370 Fall DeHon

12 Reduce V (no physical scale)
tgd=Q/I=(CV)/I V S×V Id=(mCOX/2)(W/L)(Vgs-VTH)2 Id  S2×Id tgd  tgd /S Penn ESE370 Fall DeHon

13 Observe Ignoring leakage Penn ESE370 Fall DeHon

14 Energy vs. Power? What do we care about? Battery operated devices?
Desktops? Penn ESE370 Fall DeHon

15 Ratioed Logic Penn ESE370 Fall DeHon

16 Note on what about to see
Not clear win Should be able to analyze Chance to exercise analysis Kind of thing you want to be able to analyze Pattern should recognize May be a stepping stone to something interesting to come… Penn ESE370 Fall DeHon

17 Idea Building both pull-up and pull-down can be expensive – many gates
Seems wasteful to build logic function twice Once in pullup, once in pulldown Large capacitance Penn ESE370 Fall DeHon

18 Idea Maybe only need to build one Build NFET pulldown
Exploit high N mobility Penn ESE370 Fall DeHon

19 Ratioed Inverter Does this work? WP=1 WN=1
Penn ESE370 Fall DeHon

20 Ratioed Inverter How do we need to size N to make it work? WP=1
Penn ESE370 Fall DeHon

21 DC Transfer Function Penn ESE370 Fall DeHon

22 Worst-Case Output Drive?
WP=1 Penn ESE370 Fall DeHon

23 Noise Margin Tradeoff Impact of increasing (reducing) noise margin?
Penn ESE370 Fall DeHon

24 Class stopped here Penn ESE370 Fall DeHon

25 Size for R0/2 drive? Penn ESE370 Fall DeHon

26 Compare Static CMOS Total Transistor Width Input capacitance load
Penn ESE370 Fall DeHon

27 Power? Istatic ? Output high? Output low? Ileak Ipmos_on
Vdd/(R0/2) -- for our sample case Penn ESE370 Fall DeHon

28 Power Ptot ≈ a(½Cload+Csc)V2f +PlowV2/Rpon
+(1-Plow)VI’s(W/L)e-Vt/(nkT/q) Penn ESE370 Fall DeHon

29 How size for R0/2 drive? Penn ESE370 Fall DeHon

30 How size for R0/2 drive? Penn ESE370 Fall DeHon

31 Which Implementation is faster in ratioed logic?
Penn ESE370 Fall DeHon

32 Illustrates Preferred gate changes Penn ESE370 Fall DeHon

33 How size for R0/2 drive? K-input nor Penn ESE370 Fall DeHon

34 When better than CMOS nor-k?
Better = smaller, lower input capacitance Penn ESE370 Fall DeHon

35 Admin Project Andre office hours Tuesday 4:30pm
Hope you got a chance to try out many things this weekend Due Friday Andre office hours Tuesday 4:30pm Penn ESE370 Fall DeHon

36 Ideas Energy-Delay tradeoff: Et2 There are other logic disciplines
We have the tools to analyze Ratioed Logic Tradeoff noise margin for Reduced area? Capacitive load? Dissipates static power in one mode Penn ESE370 Fall DeHon


Download ppt "Day 17: October 18, 2010 (Energy) Ratioed Logic"

Similar presentations


Ads by Google