Download presentation
Presentation is loading. Please wait.
Published bySuparman Yuwono Modified over 6 years ago
1
Objectives Use properties of congruent triangles.
Prove triangles congruent by using the definition of congruence.
2
Geometric figures are congruent if they are the same size and shape
Geometric figures are congruent if they are the same size and shape. Corresponding angles and corresponding sides are in the same position in polygons with an equal number of sides. Two polygons are congruent polygons if and only if their corresponding sides are congruent. Thus triangles that are the same size and shape are congruent.
4
For example, P and Q are consecutive vertices.
Two vertices that are the endpoints of a side are called consecutive vertices. For example, P and Q are consecutive vertices. Helpful Hint
5
To name a polygon, write the vertices in consecutive order
To name a polygon, write the vertices in consecutive order. For example, you can name polygon PQRS as QRSP or SRQP, but not as PRQS. In a congruence statement, the order of the vertices indicates the corresponding parts.
6
Example 1: Naming Congruent Corresponding Parts
Given: ∆PQR ∆STW Identify all pairs of corresponding congruent parts. Angles: P S, Q T, R W Sides: PQ ST, QR TW, PR SW
7
Check It Out! Example 1 If polygon LMNP polygon EFGH, identify all pairs of corresponding congruent parts. Angles: L E, M F, N G, P H Sides: LM EF, MN FG, NP GH, LP EH
8
Example 2A: Using Corresponding Parts of Congruent Triangles
Given: ∆ABC ∆DBC. Find the value of x. BCA and BCD are rt. s. Def. of lines. BCA BCD Rt. Thm. mBCA = mBCD Def. of s Substitute values for mBCA and mBCD. (2x – 16)° = 90° 2x = 106 Add 16 to both sides. x = 53 Divide both sides by 2.
9
Example 2B: Using Corresponding Parts of Congruent Triangles
Given: ∆ABC ∆DBC. Find mDBC. ∆ Sum Thm. mABC + mBCA + mA = 180° Substitute values for mBCA and mA. mABC = 180 mABC = 180 Simplify. Subtract from both sides. mABC = 40.7 DBC ABC Corr. s of ∆s are . mDBC = mABC Def. of s. mDBC 40.7° Trans. Prop. of =
10
Check It Out! Example 2a Given: ∆ABC ∆DEF Find the value of x.
AB DE Corr. sides of ∆s are . AB = DE Def. of parts. Substitute values for AB and DE. 2x – 2 = 6 2x = 8 Add 2 to both sides. x = 4 Divide both sides by 2.
11
Check It Out! Example 2b Given: ∆ABC ∆DEF Find mF. ∆ Sum Thm.
mEFD + mDEF + mFDE = 180° ABC DEF Corr. s of ∆ are . mABC = mDEF Def. of s. mDEF = 53° Transitive Prop. of =. Substitute values for mDEF and mFDE. mEFD = 180 mF = 180 Simplify. mF = 37° Subtract 143 from both sides.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.