Download presentation
Presentation is loading. Please wait.
1
Prospects of J-PARC Neutrino Program
Changgen Yang Institute of High Energy Physics Beijing
2
Overview of J-PARC expect to start in 2007
approved ~1GeV n beam Super-K: 22.5 kt Hyper-K: 1000 kt 0.77MW 50 GeV PS 4MW 50 GeV PS ( conventional n beam) Phase-I (0.77MW + Super-K) Phase-II (4MW+Hyper-K) ~ Phase-I 200
3
J-PARC AERI@Tokai-mura (60km N.EJ. of KEK) Construction 2001~2006
MINOS K2K E(GeV) 50 120 12 Int.(1012ppp) 330 40 6 Rate(Hz) 0.292 0.53 0.45 Power(MW) 0.77 0.41 0.0052 (60km N.EJ. of KEK) Construction 2001~2006 (280m from target) (Approved in Dec.2000)
4
JHFnu: K2K as an example nm m+ p+ SK FD Target+Horn 200m decay pipe
~250km FD Pion monitor (PIMON) MUMON
5
Three Beams Wide Band Beam Narrow Band Beam Off Axis Beam q Intense
Wide sensitivity in Dm2 BG from HE tail Syst. err from spectrum extrapolation Wide Band Beam 2horns Narrow Band Beam Less HE tail Less sys err from spectrum “counting experiment” Easy to tune En momentum selected p Off Axis Beam High int. narrow band beam More HE tail than NBB Hard to tune En q Horns Decay Pipe Far Det.
6
q Target Horns Decay Pipe Far Det. Off Axis Beam
7
Comparision of Spectra
800MeV~1GeV Sharp peak for NBB/OAB OAB produce very intense “NBB” WBB:5200 CC int./22.5kt/yr NBB: 620 CC int./22.5kt/yr (2GeV/c p tune) OAB: 2200 CC int./22.5kt/yr (2degree)
8
ne contamination Very small ne/nm ratio at nm spectrum peak: 1~2x10-3
NBB (LE2p) OAB (2degree) m-decay m-decay K-decay K-decay 0.73% 1.0% Very small ne/nm ratio at nm spectrum peak: 1~2x10-3
9
Requirement of Near Detector:
Measure the quality of neutrino beam Estimate the neutrino flux and the energy spectrum at Super-K Study neutrino interactions to estimate b.g. for oscillation analysis Measurements of the neutrino beam: Direction; Flux/spectrum for and e Profile Stability Event types(QE, single ,NC pi0 etc…)
10
One example of Near Detector
11
Far/Near ratio (OA 2 deg)
12
Intermediate Detector
13
A tool: Pion Monitor(PIMON)
nm disappearance F/N extrapolation (incl. HE tail) Kaon production(p/K ratio) HE tail ne appearance BG : NCp0: ne~1:1, half of p0 BG from HE tail F/N extrapolation HE tail Kaon production(p/K ratio) HE tail ne contamination Neutrino int. study at 280m Precise spectrum information
14
Far detector: Super-Kamiokande
15
Physics Goal of JHFnu(Phase I)
L=295km, En=0.5~2GeV(Match the WCD) Precise determination of neutrino oscillation parameters: sin2223 1% m232 1×10-4eV2 at (sin22q=1.0, Dm2 =3.2×10-3eV2) sin2213 < 1% Physics Goal of JHFnu(Phase II) CP violation measurement Proton decay
16
Neutrino Energy Reconstruction
Assume CC quasi elastic (CCQE) reaction nl + n → l + p n l- p (El , pl) ql
17
Neutrino Energy Reconstruction
Quasi-elastic s=80MeV En(reconstruct) En (True) En(reconstruct) – En (True) (MeV) QE dominate at ~1GeV
18
Dm232 and q23 measurement P(nm→nm)=1 - cos4q13 sin22q23 sin2(1.27 Dm232 L/E) ~1 P(nm→ nm ) sin22q Dm2 En (GeV)
19
Reconstructed En (MeV)
nm disappearance 1ring FC m-like Ratio after BG subtraction (linear) Dm2=3×10-3 sin22q=1.0 Oscillation with Dm2=3×10-3 sin22q=1.0 Non-QE (log) No oscillation ~3% Reconstructed En (MeV) Fit with 1-sin22q・sin2(1.27Dm2L/E)
20
q13 measurement P(nm→ne)=sin22q13 sin2q23 sin2(1.27 Dm232 L/E)
A mixing angle between 1st and 3rd generation , q13 may be not very small A discovery of nm→ne can open the new window to study CP violation in this mode May be a source of baryogenesis in the universe
21
ne appearance ×20 improvement
Background rejection against NC p0 is improved. sin22qme=0.05 (sin22qme 0.5sin22q13) Dm2 CHOOZ ×20 improvement 3 5 ×10-3 sin22qme
22
Non standard n oscillation
A sterile neutrino (LSND result? 3 or 4 n’s) with nm nm /ne measure: nm nt ( / ns ) non standard CP violation of nm→nt . Any other unexpected phenomena
23
nm →nt confirmation NC p0 interaction (n + N → n + N + p0)
nm ne CC + NC(~0.5CC) ~0 (sin22qme~0) nm CC + NC(~0.5CC) ~0 (maximum oscillation) nt NC #p0 is sensitive to nt flux. OAB nm nt nm ns D=390±44 #p0 + #e-like Dm232 3.510-3
24
n detector Phase-II: Hyper-K 1,000 kt Far n detectors Phase-I: Suker-K
22.5kt (50kt)
25
Search for nmne sin22qme sensitivity 310-3 Phase-II Phase-I ~310-4
102 Exposure/(22.5kt1021pot) p0 background has to be understood with 2% level. (n physics at a front detector)
26
CP violation in n oscillation
L=295km : small MSW En~1 GeV : large CP asym. If LSND is true, CP violation may be much larger than expect.
27
CP Violation Study Compare nmne with nmne Dm122 =5×10-5eV2 ,
sin22q13 = 0.01 q23 = p/4, q12 = p/8 Compare nmne with nmne N(e+) NO CP violation w/o matter effect. |d|>20 (3s discovery) 3s discovery 90% C.L. N(e-)
28
Analysis for discovery of p→e+π0
Tight momentum cut ⇒ target is mainly free protons efficiency=17.4%, 0.15BG/Mtyr free proton bound proton Small systematic uncertainty of efficiency High detection efficiency Perfectly known proton mass and momentum No Fermi momentum No binding energy No nuclear effect
29
How the signal looks like
Proton mass peak can be observed ! τp/B(p→e+π0) = 1×1035 yrs S/N = 4 for 1×1035 years ↓ S/N = 1 for 4×1035 years τp/B(p→e+π0) = several×1035 yrs is reachable by a large water Cherenkov det.
30
Physics Reach Phase-I (0.77MW + 22.5kt): Phase-II (4MW + 1000kt):
NC interaction: Establish nmnt and limit on nmns nmnm : dsin22q23 < 0.01 nmne : sin22q13 < 6×10-3 (90% CL) nmnm : dDm < 1×10-4eV2 at (sin22q=1.0, Dm2 =3.2×10-3eV2) Phase-II (4MW kt): nmne : sin22q13 < 1×10-3 (90% CL) nmne vs nmne : |d| >20 (3s discovery) at (Dm122 =5×10-5eV2 , Dm232 =3×10-3eV2)
31
q13 measurement:superbeams vs. reactor
P. Huber et al., hep-ph/ 400 tGWy 8000 tGWy Systematics Correlations Degeneracies
32
To get funding for the 2 km Detector?
To get additional funding for the Experimental hall + Detector (from KEK for JPY 2004?) The availability of the candidate site for the 2 km detector Realistic design and cost estimation of the detector hall
33
Schedule (4 year plan) KEK(~163 M$)
MEXT(Ministry of Education,Science and Technology) Council for Science and Technology Policy Ministry of Finance Need re-consideration for JFY 2004
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.