Download presentation
Presentation is loading. Please wait.
Published byImogene Washington Modified over 6 years ago
1
Magnetic, structural and electronic properties of LaFeAsO1-xFx
Rüdiger Klingeler Leibniz Inst. for Solid State and Materials Research IFW Dresden Today: Original Abstract: NMR mSR, M, r Pulsed field m-wave, M Optics Neutrons Magnetisation H. Grafe et al., PRL 101, (‘08) H.H. Klauss et al., PRL, in print H. Luetkens et al., PRL, accepted G. Fuchs et al., PRL, accepted A. Narduzzo et al., Phys. Rev. B, in print S.-L. Drechsler et al., arXiv: H. Luetkens et al., arXiv: S.A.J. Kimber et al. arXiv: R. Klingeler et al., arXiv:
2
Our samples non-magnetic H. Luetkens et al., arXiv:
3
LaFeAsO1-xFx C. Hess et al.
4
LaFeAsO1-xFx c(T) ~ T: AFM correlations? Sample degrades >500K
R. Klingeler et al., arXiv:
5
LaFeAsO1-xFx c(T) ~ T: pseudogap vs. AFM correlations
Slope dc/dT const. AFM correlations in SC samples or: x-independent large pseudogap R. Klingeler et al., arXiv:
6
LaFeAsO1-xFx c(T) ~ T: pseudogap vs. AFM correlations
Slope dc/dT const. AFM correlations in SC samples or: x-independent large pseudogap R. Klingeler et al., arXiv:
7
PrFeAsO: Thermal Expansion
8
PrFeAsO: Thermal Expansion
La Pr Field dependent structural changes below TN (no field effect in LaFeAsO)
9
Acknowledgements Cooperations: H.H. Klauss et al. TU Dresden
B. Büchner Synthesis: G. Behr, J. Werner, M. Deutschmann, R. Müller, R. Pichl, … Theory: S.L. Drechsler, H. Eschrig, K. Koepernick, …. Transport : A. Kondrat, C. Hess et al. M, Thermodynamics: N. Leps, S. Gass, L. Wang et al. NMR: H. Grafe, G. Lang, D. Paar, V. Kataev et al. Diffraction: J. Hamann-Borrero Pulsed field: G. Fuchs et al. Microwave absorption: A. Narduzzo et al. Cooperations: H.H. Klauss et al. TU Dresden J. Litterst et al TU Braunschweig H. Luetkens et al. PSI Villingen A. de Visser et al. U Amsterdam M. Braden et al. U Köln I. Eremin et al. MPI PKS Dresden A. Vassiliev et al. Moscow State University
11
LaFeAsO: Pressure dependence
Negative p-dependence of TN Coll.: M. Braden, U Köln A. De Visser, U. Amsterdam
12
Transport Resistivity Clearly two features in the second derivative
Check with Christian T_dep something astonishingly similar to cuprates Clearly two features in the second derivative Anomaly at T = 150 K survives for x = 0.05 ~T2, ~T depending on doping and temperature
13
Susceptibility Phase Transition
Kink around 140 K due to afm correlations Derivative shows two peak structure (magnetic and structural phase transition) Shift towards lower energies Decreasse of magnetization at the kink
14
Mößbauer/ZF-mSR Clear oscilations below TN Clear line splitting at TN
AFM arises from a spin density wave of the conduction electrons Clear line splitting at TN Effective moment m=0.25mB << 2
15
mSR TF mSR, x = 0.1 ZF mSR, x = 0.1 Magnetism suppressed
Relaxation rate s ~ l-2 ~ n/m* → lab(0) = 254 nm
16
Spin lattice relaxation
NMR 75As, LaO0.9F0.1FeAs Knight shift Spin lattice relaxation Knight shift: 1) Pseudogap-like density suppression 2) Spin-singlet pairing T1-1 ~ T3 for T < Tc → line nodes
17
LaFeAsO1-xFx Weak localization-like behavior at low T for x<0.05
Superconductivity for x>0.04 Anomaly at T = 150 K for nonsuperconducting samples Maximum above Tc for sc samples remnant from upturn Change from linear T-dependence in the normal state to quadratic Tc decreases for high doping C. Hess et al.
18
LaFeAsO1-xFx R. Klingeler et al., arXiv:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.