Download presentation
Presentation is loading. Please wait.
Published byAlyson Patterson Modified over 6 years ago
1
Kirchhoffβs Rules Limits of Progressive Simplification
Simple Examples More complicated examples Capacitors in series/parallel
2
Progressive Simplification
Simplify down Rtot = 10.3 Ξ© Ibat = 0.87 A Build back up Voltage across top =9 πβ .87 π΄ .5 Ξ© β π΄ 5Ξ© Current through 10 Ξ© Current through 8.7 Ξ© Current through 6 Ξ© Voltage across 4/8 Ξ©
3
Kirchhoffβs Rules Progressive simplification doesnβt work on some circuits. Can combine 1 Ξ© and 20 Ξ©, and 1 Ξ© and 40 Ξ©, but thatβs it!
4
Kirchhoffβs Rules Declare each branch has itβs own separate current
At any junction, current entering = current leaving For any complete loop, sum of voltage rises/drops equals 0 Currents I1, I2, I3 Canal analogy
5
Example β Problem 23 Only 1 current I Just like weβve done all along.
9 πβπΌ 8 Ξ©βπΌ 12 Ξ©βπΌ 2 Ξ©=0 πΌ= 9 π 22 Ξ© =0.41 π΄ Just like weβve done all along.
6
Example β Problem 24 Two batteries backwards (charging circuit)
Only 1 current I 18 πβπΌ 6.6 Ξ©β12 πβπΌ 2 Ξ©βπΌ 1 Ξ©=0 πΌ= 6 π 9.6 Ξ© =0.625 π΄ Note we went across 12 V battery backwards.
7
Example β Problem 24 (1) Branch point!
Draw currents I1, I2, I3 as shown Guess at direction Kirchhoff Rule #1 at point a πΌ 1 = πΌ 2 + πΌ 3 Kirchhoff Rule #1 same at point b I1 I2 I3 a b
8
Example β Problem 24 (2) Kirchhoff Rule #2 around upper loop
9 πβ πΌ Ξ©β πΌ Ξ©=0 Note separate I1 I2 Kirchhoff Rule #2 around lower loop 6 π+ πΌ Ξ©=0 Note (+) going across resistor backwards Kirchhoff Rule #2 around outer loop 9 π+6 πβ πΌ Ξ©=0 General rule: battery (+) and resistor (-), but flip sign when you go across backwards I1 I2 I3 a b
9
Example β Problem 24 (3) 6 π+ πΌ 2 15 Ξ©=0 Outer loop
9 π+6 πβ πΌ Ξ©=0 πΌ 1 = 15 π 22 Ξ© =0.68 π΄ Lower loop 6 π+ πΌ Ξ©=0 πΌ 2 = β6 π 15 Ξ© =β0.4 π΄ * Current Rule πΌ 1 = πΌ 2 + πΌ πΌ 3 = πΌ 1 β πΌ 2 =1.08 π΄ Upper loop 9 πβ πΌ Ξ©β πΌ Ξ©=0 9 πβ β0.4 π΄ 15 Ξ©β 0.68 π΄ 22 Ξ©=0 *assumed wrong direction for I2 but thatβs OK I1 I2 I3 a b
10
Example 19-3 (1) 45 π β πΌ 3 1Ξ©β πΌ 3 40 Ξ©β πΌ 1 30 Ξ©=0
Draw I1, I2, I3 Set node rule (Kirchhoff 1) Set 2 loops (Kirchhoff 2) Solve simultaneous equations Node rule from diagram πΌ 3 = πΌ 1 + πΌ 2 Upper loop 45 π β πΌ 3 1Ξ©β πΌ Ξ©β πΌ Ξ©=0 Lower loop 80 π β πΌ 2 1Ξ©β πΌ Ξ©+45 π β πΌ 3 1Ξ©β πΌ Ξ©=0 3 variables, 3 simultaneous equations
11
Example 19-3 (2) 3 variables, 3 simultaneous equations πΌ 3 = πΌ 1 + πΌ 2
45 π β πΌ 3 1Ξ©β πΌ Ξ©β πΌ Ξ©=0 80 π β πΌ 2 1Ξ©β πΌ Ξ©+45 π β πΌ 3 1Ξ©β πΌ Ξ©=0 Simplify 45 π β πΌ 3 41Ξ©β πΌ Ξ©=0 125 π β πΌ Ξ©β πΌ Ξ©=0 My suggestion πΌ 1 = β πΌ 3 πΌ 2 = β πΌ 3
12
Example 19-3 (3) Calculating πΌ 3 = πΌ 1 + πΌ 2 (1) πΌ 1 =1.5β1.37 πΌ 3 (2)
πΌ 3 = πΌ 1 + πΌ (1) πΌ 1 =1.5β1.37 πΌ (2) πΌ 2 =5.95β1.95 πΌ (3) Substitute eqns. (2) and (3) in (1) πΌ 3 = 1.5β1.37 πΌ β1.95 πΌ 3 Simplify 4.32 πΌ 3 =7.45 πΌ 3 =1.72 π΄ Plug in (2) and (3) above πΌ 1 =1.5β1.37 πΌ 3 = β0.86 π΄ (assumed wrong direction, thatβs OK) πΌ 2 =5.95β1.95 πΌ 3 = π΄
13
Example 19-3 (textbook solution)
Draw I1, I2, I3 Set node rule (Kirchhoff 1) Set 2 loops (Kirchhoff 2) Solve simultaneous equations Node rule from diagram πΌ 3 = πΌ 1 + πΌ 2 Upper loop 45 π β πΌ 3 1Ξ©β πΌ Ξ©β πΌ Ξ©=0 Outer loop 80 π β πΌ 2 1Ξ©β πΌ Ξ©+ πΌ 1 30Ξ©=0 This solution gives same answer! Note sign flip, going across resistor backwards (against assumed current)
14
Elevation analogy
15
Capacitors in series and parallel
Charges add Voltage same π π‘ππ‘ = π 1 + π 2 + π 3 = πΆ 1 π+ πΆ 2 π +πΆ 3 π = πΆ 1 + πΆ 2 + πΆ 3 π= πΆ ππ π Equivalent parallel capacitance πΆ π‘ππ‘ =πΆ 1 + πΆ 2 + πΆ 3 Series Voltages add Charge same π π‘ππ‘ =π 1 + π 2 + π 3 = π πΆ 1 + π πΆ 2 + π πΆ 2 =π 1 πΆ πΆ πΆ 3 = π πΆ ππ Equivalent series capacitance πΆ ππ = 1 πΆ πΆ πΆ 3 series/parallel rules reversed from resistors!
16
Summary β resistors/capacitors in series/parallel
π
π πππππ = π
1 + π
2 + π
3 1 π
ππππππππ = 1 π
π
π
3 Capacitors πΆ ππππππππ = πΆ 1 + πΆ 2 + πΆ 3 1 πΆ π πππππ = 1 πΆ πΆ πΆ 3
17
Examples β Capacitors in series and parallel
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.