Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kirchhoff’s Rules Limits of Progressive Simplification

Similar presentations


Presentation on theme: "Kirchhoff’s Rules Limits of Progressive Simplification"β€” Presentation transcript:

1 Kirchhoff’s Rules Limits of Progressive Simplification
Simple Examples More complicated examples Capacitors in series/parallel

2 Progressive Simplification
Simplify down Rtot = 10.3 Ξ© Ibat = 0.87 A Build back up Voltage across top =9 π‘‰βˆ’ .87 𝐴 .5 Ξ© βˆ’ 𝐴 5Ξ© Current through 10 Ξ© Current through 8.7 Ξ© Current through 6 Ξ© Voltage across 4/8 Ξ©

3 Kirchhoff’s Rules Progressive simplification doesn’t work on some circuits. Can combine 1 Ξ© and 20 Ξ©, and 1 Ξ© and 40 Ξ©, but that’s it!

4 Kirchhoff’s Rules Declare each branch has it’s own separate current
At any junction, current entering = current leaving For any complete loop, sum of voltage rises/drops equals 0 Currents I1, I2, I3 Canal analogy

5 Example – Problem 23 Only 1 current I Just like we’ve done all along.
9 π‘‰βˆ’πΌ 8 Ξ©βˆ’πΌ 12 Ξ©βˆ’πΌ 2 Ξ©=0 𝐼= 9 𝑉 22 Ξ© =0.41 𝐴 Just like we’ve done all along.

6 Example – Problem 24 Two batteries backwards (charging circuit)
Only 1 current I 18 π‘‰βˆ’πΌ 6.6 Ξ©βˆ’12 π‘‰βˆ’πΌ 2 Ξ©βˆ’πΌ 1 Ξ©=0 𝐼= 6 𝑉 9.6 Ξ© =0.625 𝐴 Note we went across 12 V battery backwards.

7 Example – Problem 24 (1) Branch point!
Draw currents I1, I2, I3 as shown Guess at direction Kirchhoff Rule #1 at point a 𝐼 1 = 𝐼 2 + 𝐼 3 Kirchhoff Rule #1 same at point b I1 I2 I3 a b

8 Example – Problem 24 (2) Kirchhoff Rule #2 around upper loop
9 π‘‰βˆ’ 𝐼 Ξ©βˆ’ 𝐼 Ξ©=0 Note separate I1 I2 Kirchhoff Rule #2 around lower loop 6 𝑉+ 𝐼 Ξ©=0 Note (+) going across resistor backwards Kirchhoff Rule #2 around outer loop 9 𝑉+6 π‘‰βˆ’ 𝐼 Ξ©=0 General rule: battery (+) and resistor (-), but flip sign when you go across backwards I1 I2 I3 a b

9 Example – Problem 24 (3) 6 𝑉+ 𝐼 2 15 Ξ©=0 Outer loop
9 𝑉+6 π‘‰βˆ’ 𝐼 Ξ©=0 𝐼 1 = 15 𝑉 22 Ξ© =0.68 𝐴 Lower loop 6 𝑉+ 𝐼 Ξ©=0 𝐼 2 = βˆ’6 𝑉 15 Ξ© =βˆ’0.4 𝐴 * Current Rule 𝐼 1 = 𝐼 2 + 𝐼 𝐼 3 = 𝐼 1 βˆ’ 𝐼 2 =1.08 𝐴 Upper loop 9 π‘‰βˆ’ 𝐼 Ξ©βˆ’ 𝐼 Ξ©=0 9 π‘‰βˆ’ βˆ’0.4 𝐴 15 Ξ©βˆ’ 0.68 𝐴 22 Ξ©=0 *assumed wrong direction for I2 but that’s OK I1 I2 I3 a b

10 Example 19-3 (1) 45 𝑉 βˆ’ 𝐼 3 1Ξ©βˆ’ 𝐼 3 40 Ξ©βˆ’ 𝐼 1 30 Ξ©=0
Draw I1, I2, I3 Set node rule (Kirchhoff 1) Set 2 loops (Kirchhoff 2) Solve simultaneous equations Node rule from diagram 𝐼 3 = 𝐼 1 + 𝐼 2 Upper loop 45 𝑉 βˆ’ 𝐼 3 1Ξ©βˆ’ 𝐼 Ξ©βˆ’ 𝐼 Ξ©=0 Lower loop 80 𝑉 βˆ’ 𝐼 2 1Ξ©βˆ’ 𝐼 Ξ©+45 𝑉 βˆ’ 𝐼 3 1Ξ©βˆ’ 𝐼 Ξ©=0 3 variables, 3 simultaneous equations

11 Example 19-3 (2) 3 variables, 3 simultaneous equations 𝐼 3 = 𝐼 1 + 𝐼 2
45 𝑉 βˆ’ 𝐼 3 1Ξ©βˆ’ 𝐼 Ξ©βˆ’ 𝐼 Ξ©=0 80 𝑉 βˆ’ 𝐼 2 1Ξ©βˆ’ 𝐼 Ξ©+45 𝑉 βˆ’ 𝐼 3 1Ξ©βˆ’ 𝐼 Ξ©=0 Simplify 45 𝑉 βˆ’ 𝐼 3 41Ξ©βˆ’ 𝐼 Ξ©=0 125 𝑉 βˆ’ 𝐼 Ξ©βˆ’ 𝐼 Ξ©=0 My suggestion 𝐼 1 = βˆ’ 𝐼 3 𝐼 2 = βˆ’ 𝐼 3

12 Example 19-3 (3) Calculating 𝐼 3 = 𝐼 1 + 𝐼 2 (1) 𝐼 1 =1.5βˆ’1.37 𝐼 3 (2)
𝐼 3 = 𝐼 1 + 𝐼 (1) 𝐼 1 =1.5βˆ’1.37 𝐼 (2) 𝐼 2 =5.95βˆ’1.95 𝐼 (3) Substitute eqns. (2) and (3) in (1) 𝐼 3 = 1.5βˆ’1.37 𝐼 βˆ’1.95 𝐼 3 Simplify 4.32 𝐼 3 =7.45 𝐼 3 =1.72 𝐴 Plug in (2) and (3) above 𝐼 1 =1.5βˆ’1.37 𝐼 3 = βˆ’0.86 𝐴 (assumed wrong direction, that’s OK) 𝐼 2 =5.95βˆ’1.95 𝐼 3 = 𝐴

13 Example 19-3 (textbook solution)
Draw I1, I2, I3 Set node rule (Kirchhoff 1) Set 2 loops (Kirchhoff 2) Solve simultaneous equations Node rule from diagram 𝐼 3 = 𝐼 1 + 𝐼 2 Upper loop 45 𝑉 βˆ’ 𝐼 3 1Ξ©βˆ’ 𝐼 Ξ©βˆ’ 𝐼 Ξ©=0 Outer loop 80 𝑉 βˆ’ 𝐼 2 1Ξ©βˆ’ 𝐼 Ξ©+ 𝐼 1 30Ξ©=0 This solution gives same answer! Note sign flip, going across resistor backwards (against assumed current)

14 Elevation analogy

15 Capacitors in series and parallel
Charges add Voltage same 𝑄 π‘‘π‘œπ‘‘ = 𝑄 1 + 𝑄 2 + 𝑄 3 = 𝐢 1 𝑉+ 𝐢 2 𝑉 +𝐢 3 𝑉 = 𝐢 1 + 𝐢 2 + 𝐢 3 𝑉= 𝐢 π‘’π‘ž 𝑉 Equivalent parallel capacitance 𝐢 π‘‘π‘œπ‘‘ =𝐢 1 + 𝐢 2 + 𝐢 3 Series Voltages add Charge same 𝑉 π‘‘π‘œπ‘‘ =𝑉 1 + 𝑉 2 + 𝑉 3 = 𝑄 𝐢 1 + 𝑄 𝐢 2 + 𝑄 𝐢 2 =𝑄 1 𝐢 𝐢 𝐢 3 = 𝑄 𝐢 π‘’π‘ž Equivalent series capacitance 𝐢 π‘’π‘ž = 1 𝐢 𝐢 𝐢 3 series/parallel rules reversed from resistors!

16 Summary – resistors/capacitors in series/parallel
𝑅 π‘ π‘’π‘Ÿπ‘–π‘’π‘  = 𝑅 1 + 𝑅 2 + 𝑅 3 1 𝑅 π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™ = 1 𝑅 𝑅 𝑅 3 Capacitors 𝐢 π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™ = 𝐢 1 + 𝐢 2 + 𝐢 3 1 𝐢 π‘ π‘’π‘Ÿπ‘–π‘’π‘  = 1 𝐢 𝐢 𝐢 3

17 Examples – Capacitors in series and parallel


Download ppt "Kirchhoff’s Rules Limits of Progressive Simplification"

Similar presentations


Ads by Google