Download presentation
Presentation is loading. Please wait.
Published byMarian Wright Modified over 6 years ago
1
Authors : Parwinder Kaur Dhillon and Sheetal Kalra
Secure Multi‐factor Remote User Authentication Scheme for Internet of Things Environments Source : International Journal of Communication Systems, In Press, 2017 Authors : Parwinder Kaur Dhillon and Sheetal Kalra Speaker : Hsiao-Ling Wu Date: 2017/09/07 In this paper, authors proposed a new authentication scheme for heterogeneous WSN. Therefore, I will introduce heterogeneous WSN later.
2
Outline Introduction Proposed scheme Security analysis
Performance analysis Conclusions This is my outline First, I will introduce what is heterogeneous WSN. And then is Proposed scheme.
3
Introduction proposed network model
4
Proposed scheme(1/9) The registration phase The login phase
The authentication phase Password change phase User Gateway Sensor
5
Proposed scheme(2/9) Notation Description
Ui A user GWN A gateway Sj A sensor node Xg Secure password known only to the GWN Xgu, Xgn Secured password shared with the user and with the sensor node IDi, PWi, Bi User’s identity, password, biometric NIDj Sensor node’s identity MIi, MPi User’s masked identity and password n, m Two random numbers
6
Proposed scheme(3/9) The registration phase for user User Gateway
Choose IDi, PWi, Bi Select random ri MPi = H(ri||PWi) MIi = H(ri||IDi) MBi = BH(ri||Bi) MPi, MIi, MBi xi = H(MIi||Xg) yi = H(MPi||Xgu) zi = H(MBi||Xgu) ei = yi ⊕ xi fi = zi⊕ xi Smart card SC = {ei, fi, Xgu} Secure channel SC Secure channel Add ri into SC SC = {ri, ei, fi, Xgu}
7
Proposed scheme(4/9) The registration phase for sensor node Xgn, NIDj
Gateway Select random rj MPj = H(Xgn||rj||NIDj) MNj = rj⊕Xgn RMPj = MPj ⊕MNj NIDj, RMPj, MNj rj* = MNj⊕Xgn MPj* =? H(Xgn||rj*||NIDj) MPj = RMPj ⊕MNj MPj* =? MPj xj = H(NIDj||Xg) yj = H(MPj||Xgn) ej = xj⊕yj ej, xj Store rj, ej, xj into memory
8
Proposed scheme(5/9) The login phase User Sensor Input IDi*, PWi*, Bi*
SC = {ri, ei, fi, Xgu} User Sensor Input IDi*, PWi*, Bi* MIi* = H(ri||IDi*) MPi* = H(ri||PWi*) MBi* = BH(ri||Bi*) yi* = H(MPi*||Xgu) zi* = H(MBi*||Xgu) yi = ei ⊕ xi zi = fi ⊕ xi yi =? yi* zi =? zi* UNi=H(yi || zi ||Xgu||TS1) UZi = n ⊕ xi MIi, ei, fi, UNi, UZi, TS1
9
Proposed scheme(6/9) The authentication phase User
rj, ej, xj User MIi, ei, fi, UNi, UZi, TS1 sensor Gateway Check |TS1-Tc| < △T yj = ej ⊕ xj Aj = H(Xgn||TS1||TS2)⊕yj MIi, ei, fi, UNi, NIDj, ej, Aj, TS1, TS2
10
Proposed scheme(7/9) The authentication phase
MIi, ei, fi, UNi, NIDj, ej, Aj, TS1, TS2 sensor Gateway Check |TS2-Tc| < △T xj* = h(NIDj*||Xg) yj* = ej ⊕ xj* yj = H(Xgn||TS1||TS2)⊕ Aj yj* =? yj xi* = h(MIi||Xg) yi* = ei ⊕ xi* zi* = fi ⊕ xi* UNi* =H(yi* || zi* ||Xgu||TS1) UNi* =? UNi R1 = xi* ⊕H(xj*||Xgn) Hj = H(xj*||Xgn||TS1|| TS2||TS3) Vi = H(UNi* ||TS1|| TS2 ||TS3) R1, Hj, Vi, TS1, TS2, TS3
11
Proposed scheme(8/9) The authentication phase User sensor
Check |TS3-Tc| < △T Hj =? H(xj*||Xgn||TS1|| TS2||TS3) xi* = R1⊕H(xj||Xgn) n = UZi ⊕ xi* R2 = H(xi*||NIDj||TS1|| TS2||TS3||TS4)⊕m SK = H(H(n⊕m)||TS1|| TS2) R2, T1, T2, T3, T4, Vi Check |TS4-Tc| < △T Vi = H(UNi ||TS1|| TS2 ||TS3) m = R2⊕H(xi||NIDj||TS1|| S2||TS3||TS4) SK = H(H(n⊕m)||TS1|| TS2)
12
Proposed scheme(9/9) Password change phase Input PWi*, Bi*
SC = {ri, ei, fi, Xgu} Input PWi*, Bi* MPi* = H(ri||PWi*) MBi* = BH(ri||Bi*) yi* = H(MPi*||Xgu) zi* = H(MBi*||Xgu) yi = ei ⊕ xi zi = fi ⊕ xi yi =? yi* zi =? zi* Input NPWi NMPi = H(ri||NPWi) nyi = H(NMPi||Xgu) nei = nyi ⊕ xi SC = {ri, nei, fi, Xgu} User
13
Security analysis Bypassing 忽略
11. An Y. Security analysis and enhancements of an effective biometric‐based remote user authentication scheme using smart cards. Biomed Res Int. 2012;2012. 19. Chen B‐L, Kuo W‐C, Wuu L‐C. Robust smart‐card‐based remote user password authentication scheme. Int J Commun Syst. 2014;27 (2):377‐389. 16. Yeh H‐L, Chen T‐H, Liu P‐C, Kim T‐H, Wei H‐W. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors. 2011;11(5):4767‐4779. 20. Xue K, Ma C, Hong P, Ding R. A temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks. J Netw Comput Appl. 2013;36(1):316‐323. 22. Turkanović M, Brumen B, Hölbl M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor net- works, based on the Internet of Things notion. Ad Hoc Netw.2014; 20:96‐112. 38. Das AK, Goswami A. A robust anonymous biometric‐based remote user authentication scheme using smart cards. Journal of King Saud University‐Comput Inform Sci. 2015;27(2):193‐210. 43. He D, Kumar N, Chilamkurti N. A secure temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks, in Wireless and Pervasive Computing (ISWPC), 2013 International Symposium on, 2013;1–6. 29. Li C‐T, Weng C‐Y, Lee C‐C. An advanced temporal credential‐based security scheme with mutual authentication and key agreement for wireless sensor networks. Sensors. 2013;13 (8):9589‐9603.
14
Performance analysis identity or password bytes, nonce 16 bytes, timestamp 19 bytes, hash value 20 bytes, symmetric key 16 bytes 11. An Y. Security analysis and enhancements of an effective biometric‐based remote user authentication scheme using smart cards. Biomed Res Int. 2012;2012. 19. Chen B‐L, Kuo W‐C, Wuu L‐C. Robust smart‐card‐based remote user password authentication scheme. Int J Commun Syst. 2014;27 (2):377‐389. 16. Yeh H‐L, Chen T‐H, Liu P‐C, Kim T‐H, Wei H‐W. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors. 2011;11(5):4767‐4779. 20. Xue K, Ma C, Hong P, Ding R. A temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks. J Netw Comput Appl. 2013;36(1):316‐323. 22. Turkanović M, Brumen B, Hölbl M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor net- works, based on the Internet of Things notion. Ad Hoc Netw.2014; 20:96‐112. 38. Das AK, Goswami A. A robust anonymous biometric‐based remote user authentication scheme using smart cards. Journal of King Saud University‐Comput Inform Sci. 2015;27(2):193‐210. 43. He D, Kumar N, Chilamkurti N. A secure temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks, in Wireless and Pervasive Computing (ISWPC), 2013 International Symposium on, 2013;1–6. 29. Li C‐T, Weng C‐Y, Lee C‐C. An advanced temporal credential‐based security scheme with mutual authentication and key agreement for wireless sensor networks. Sensors. 2013;13 (8):9589‐9603.
15
Conclusions Multi‐factor authentication scheme High security level
lightweight Less storage
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.