Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometry/Trig Name: __________________________

Similar presentations


Presentation on theme: "Geometry/Trig Name: __________________________"— Presentation transcript:

1 Geometry/Trig Name: __________________________
Unit 3 Review Packet Date: ___________________________ Section I – Identify the pairs of angles. Lines are not necessarily parallel. 1. Ð7 & Ð11 ________________________________ 2. Ð3 & Ð6 _________________________________ 3. Ð8 & Ð16 ________________________________ 4. Ð2 & Ð7 _________________________________ 5. Ð3 & Ð5 _________________________________ 6. Ð1 & Ð16 _________________________________ 7. Ð1 & Ð6 __________________________________ 8. Ð1 & Ð4 __________________________________ 1 2 3 4 6 8 7 5 9 10 11 12 14 16 15 13 b a d c Section II – Fill In The Blank. Vertical angles are ______________________________________ If two lines are parallel, then corresponding angles are ___________________________________ If two lines are parallel, then alternate interior angles are ________________________________ If two lines are parallel, then alternate exterior angles are ________________________________ If two lines are parallel, then same side interior angles are ________________________________ If two lines are parallel, then same side exterior angles are _______________________________ Section III – Name the three main ways to prove that lines are parallel. 1. ____________________________________________________________________ ______________________________________________________________________ 2. ____________________________________________________________________ 3. ____________________________________________________________________

2 Geometry/Trig Unit 3 Review Packet Page 2
Section IV – Determine which lines, if any, are parallel based on the given information. 1.) Ð1  Ð9 _________________________ 2.) Ð1  Ð4 _________________________ 3.) mÐ12 + mÐ14 = 180 _________________________ 4.) Ð1  Ð13 _________________________ 5.) Ð7  Ð14 _________________________ 6.) mÐ13 = mÐ11 _________________________ 1 2 3 4 6 8 7 5 9 10 11 12 14 16 15 13 b a c d Section V - Proofs 1 3 1. Given: a || b Prove: Ð1 and Ð7 are supplementary (We’ve completed this proof numerous times in class. It may take you more steps than this.) b 4 5 6 7 a 8 2 Statements Reasons 1. 1. 2. 2. 3. 3. 4. 4. 5. 5.

3 Geometry/Trig Unit 3 Review Packet Page 3
1 2 3 4 5 A C D E F B J K Given: AJ || CK; mÐ1 = mÐ5 Prove: BD || FE Reasons Statements 1. _________________________ Given mÐ1 = mÐ3; 1  3 2. ___________________________ ___________________________ 3. _________________________ Given 4. _________________________ Substitution 5. _________________________ ___________________________ P 3. Given: ST || QR; Ð3 Prove: Ð3 1 3 S T 2 Q R Statements Reasons 1. _________________________ 1. ____________________________ 2. Ð2 2. ____________________________ ___________________________ ___________________________ 3. _________________________ 3. Given 4. 4. ____________________________

4 Geometry/Trig Unit 3 Review Packet Page 4
1 3 4 5 6 7 8 9 10 2 b a c d 4. Given: a || b; Ð4 Prove: Ð1 Statements Reasons 1. _________________________ Given 1  3 2. ___________________________ 3. _________________________ Substitution 4. a || b 4. ___________________________ 5. 4  7 5. ___________________________ ___________________________ ___________________________ 6. _________________________ Substitution 7. 7  10 7. ___________________________ 8. _________________________ Substitution J G K I H 2 1 3 5. Given: GK bisects ÐJGI; Ð3  Ð2 Prove: GK || HI Statements Reasons 1. _________________________ Given Ð1  Ð2 2. ___________________________ 3. _________________________ Given 4. _________________________ 4. ___________________________ 5. _________________________ 5. If _____________________ angles are congruent, then the lines are parallel.

5 Unit 3 Review Packet – Page 5
Geometry/Trig Unit 3 Review Packet – Page 5 Section VI – Solve each problem. 1. 2. w Hint: Find same-side interior angles. 100° 2x + y z + 57 x 5x + y 37° 2y 5x - y w = _______ x = _______ y = _______ z = _______ x = _______ y = _______ 3. 4. 30° x + 12 6x 8x + 1 y 5x 75° x = _______ y = _______ x = _______ 5. 6. mA = _______ mCBD = _______ mABC = _______ A B D C y 115° 45° x 30° 60° z Classify each triangle by its sides and angles: CBD ___________________________ ABC ___________________________ ABD ___________________________ x = _______ y = _______ z = _______

6 Unit 3 Review Packet – Page 6
Geometry/Trig Unit 3 Review Packet – Page 6 Section VII – Complete the chart and answer the questions related to polygons.. Number of Sides Name of polygon Sum of interior angles. Measure of each interior angle if it was a regular polygon Sum of the Exterior Angles Measure of each exterior angle if it was a regular polygon. Number of Diagonals that can be drawn. 3 4 5 6 7 8 9 10 n 1. 4x + 13 4x + 25 6x 2. A B 5x 4x + 17 80° 83° D C x = _______ Is AB || DC? __________ Is AD || BC? __________ x = _______


Download ppt "Geometry/Trig Name: __________________________"

Similar presentations


Ads by Google