Presentation is loading. Please wait.

Presentation is loading. Please wait.

Implementation of 2D stress-strain Finite Element Modeling on MATLAB

Similar presentations


Presentation on theme: "Implementation of 2D stress-strain Finite Element Modeling on MATLAB"β€” Presentation transcript:

1 Implementation of 2D stress-strain Finite Element Modeling on MATLAB
Xingzhou Tu

2 What is stress? Stress is a tensor
𝑇 π‘₯ 𝑇 𝑦 𝑇 𝑧 = 𝜎 π‘₯π‘₯ 𝜎 π‘₯𝑦 𝜎 π‘₯𝑧 𝜎 𝑦π‘₯ 𝜎 𝑦𝑦 𝜎 𝑦𝑧 𝜎 𝑧π‘₯ 𝜎 𝑧𝑦 𝜎 𝑧𝑧 𝑛 π‘₯ 𝑛 𝑦 𝑛 𝑧

3 What is strain? . . Strain is also a tensor
π‘Ÿ . π‘Ÿ + 𝑒 . Deformation πœ€ 𝑖𝑗 = 1 2 ( πœ• 𝑒 𝑖 πœ• π‘Ÿ 𝑗 + πœ• 𝑒 𝑗 πœ• π‘Ÿ 𝑖 )

4 2D case Plane stress – no stress in z-direction
Things need to consider: 𝜎 π‘₯π‘₯ 𝜎 𝑦𝑦 𝜎 π‘₯𝑦 πœ€ π‘₯π‘₯ πœ€ 𝑦𝑦 πœ€ π‘₯𝑦

5 Stress-Strain Relation in 2D case
E: Young’s Modulus V: Poisson Ratio πœ€ 𝜎 π‘₯π‘₯ 𝜎 𝑦𝑦 𝜎 π‘₯𝑦 = 𝐸 1βˆ’ 𝑣 𝑣 0 𝑣 βˆ’π‘£ πœ€ π‘₯π‘₯ πœ€ 𝑦𝑦 2πœ€ π‘₯𝑦 𝜎

6 FEM: Turner Triangle Three nodes
𝑒 = 𝑒 1,π‘₯ 𝑒 1,𝑦 𝑒 2,π‘₯ 𝑒 2,𝑦 𝑒 3,π‘₯ 𝑒 3,𝑦 𝑓 = 𝑓 1,π‘₯ 𝑓 1,𝑦 𝑓 2,π‘₯ 𝑓 2,𝑦 𝑓 3,π‘₯ 𝑓 3,𝑦

7 FEM: Linear Interpolation
Use linear interpolation to evaluate displacement at other points 𝑒 π‘₯ (π‘₯,𝑦) 𝑒 𝑦 (π‘₯,𝑦) = 𝑁 1 (π‘₯,𝑦) 0 𝑁 2 (π‘₯,𝑦) 0 𝑁 1 (π‘₯,𝑦) 𝑁 2 (π‘₯,𝑦) 0 𝑁 2 (π‘₯,𝑦) 0 𝑁 2 (π‘₯,𝑦) 𝑒 𝑁 1 π‘₯,𝑦 = 2 π‘₯ 2 𝑦 3 βˆ’ π‘₯ 3 𝑦 2 +π‘₯ (𝑦 2 βˆ’ 𝑦 3 )+𝑦( π‘₯ 3 βˆ’ π‘₯ 2 ) 2𝐴 𝑁 2 π‘₯,𝑦 = 2 π‘₯ 3 𝑦 1 βˆ’ π‘₯ 1 𝑦 3 +π‘₯ (𝑦 3 βˆ’ 𝑦 1 )+𝑦( π‘₯ 1 βˆ’ π‘₯ 3 ) 2𝐴 𝑁 1 π‘₯,𝑦 = 2 π‘₯ 1 𝑦 2 βˆ’ π‘₯ 2 𝑦 1 +π‘₯ (𝑦 1 βˆ’ 𝑦 2 )+𝑦( π‘₯ 2 βˆ’ π‘₯ 1 ) 2𝐴 A is the area of the triangle.

8 FEM: stress and strain vectors
Differentiate the displacement to get the strain vector Use the stress-strain relation to get the stress vector πœ€ =𝐡 𝑒 , 𝐡= 1 2𝐴 𝑦 2 βˆ’ 𝑦 𝑦 3 βˆ’ 𝑦 π‘₯ 3 βˆ’ π‘₯ π‘₯ 3 βˆ’ π‘₯ 2 𝑦 2 βˆ’ 𝑦 3 π‘₯ 1 βˆ’ π‘₯ 𝑦 1 βˆ’ 𝑦 π‘₯ 1 βˆ’ π‘₯ π‘₯ 2 βˆ’ π‘₯ 1 𝑦 3 βˆ’ 𝑦 1 π‘₯ 2 βˆ’ π‘₯ 1 𝑦 1 βˆ’ 𝑦 2 𝜎 =𝐸 πœ€ =𝐸𝐡 𝑒 , 𝐸= 𝐸 1βˆ’ 𝑣 𝑣 0 𝑣 βˆ’π‘£ 2

9 FEM: static equilibrium
Static equilibrium <-> Minimize Potential Energy π‘Š= β„Ž 𝜎 𝑇 πœ€ π‘‘π΄βˆ’ 𝑒 𝑇 𝑓= β„Ž 𝑒 𝑇 𝐡 𝑇 𝐸𝐡𝑒 π‘‘π΄βˆ’ 𝑒 𝑇 𝑓= 1 2 𝑒 𝑇 (π΄β„Ž 𝐡 𝑇 𝐸𝐡)π‘’βˆ’ 𝑒 𝑇 𝑓 h is the thickness of the 2D domain in the z-direction.

10 FEM: Stiffness Matrix 𝑓 =π΄β„Ž 𝐡 𝑇 𝐸𝐡 𝑒 =𝐾 𝑒 , 𝐾=π΄β„Ž 𝐡 𝑇 𝐸𝐡,
Minimize Potential Energy -> π›Ώπ‘Š=0 K is the stiffness matrix of the element 𝑓 =π΄β„Ž 𝐡 𝑇 𝐸𝐡 𝑒 =𝐾 𝑒 , 𝐾=π΄β„Ž 𝐡 𝑇 𝐸𝐡,

11 Implementation: Problem
Cantilever beam Beam Dimension: 100mm*10mm*10mm 10N load at the end of the beam Aluminum: Young’s modulus = 70000N/mm^2 Poisson ratio = 0.33

12 Implementation: Meshing
4000 elements 2111 nodes 1mm

13 Implementation: System Stiffness Matrix
2111 nodes: Each node has two degrees of freedom 4222*4222 system stiffness matrix Build a 4222-by-4222 zero matrix Traversing each element: Calculate the stiffness matrix of this element Adding the matrix into the corresponding row and column of the system matrix.

14 Implementation: Boundary Condition
Two kinds of Boundary Condition: Fixed Support: zero displacement at the fixed node External load: 10N load at the end of the beam 0N load inside the beam Unknown load (reaction force) at the fixed node

15 Implementation: Solving
4222 unknowns, 4222 equations. ? : : ? : : βˆ’ = 𝐾 βˆ— : : 0 ? : : ? Unknown reaction force at fixed nodes Zero load inside the beam 10N load on the –y direction at the end of the beam Unknown displacement at other nodes Zero displacement at fixed nodes

16 Implementation: Result (Displacement plot)
Maximum 𝛿𝑦=βˆ’ πœ‡π‘š

17 Implementation: Theory Prediction
FEM simulation result: 𝛿= πœ‡π‘š Theory Prediction: Matches perfectly! 𝛿= 𝐹 𝐿 3 3𝐸𝐼 = 10π‘βˆ— 100π‘šπ‘š 3 3βˆ—70000𝑁 π‘šπ‘š βˆ’2 βˆ— 1 12 βˆ—10π‘šπ‘šβˆ— 10π‘šπ‘š 3 =57.143πœ‡π‘š

18 Thanks for your listening!
Questions? Thanks for your listening!


Download ppt "Implementation of 2D stress-strain Finite Element Modeling on MATLAB"

Similar presentations


Ads by Google