Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometreg Cyfesurynnau Cartesaidd

Similar presentations


Presentation on theme: "Geometreg Cyfesurynnau Cartesaidd"β€” Presentation transcript:

1 Geometreg Cyfesurynnau Cartesaidd
Cartesian Co-ordinate Geometry @mathemateg /adolygumathemateg

2 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ganwyd RenΓ© Descartes ar y 15fed o Fawrth, 1596, yn Ffrainc. Defnyddiodd graffiau er mwyn cysylltu algebra efo geometreg. Mae graffiau’n defnyddio echelinau-π‘₯ ag 𝑦 yn cael eu galw’n graffiau Cartesaidd, ar ei Γ΄l. RenΓ© Descartes was born on the 15th of March, 1596, in France. He used graphs in order to connect algebra to geometry. Graphs that use π‘₯ and 𝑦 axes are named Cartesian graphs.

3 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ystyriwch unrhyw ddau bwynt 𝐴= π‘₯ 1 , 𝑦 1 , 𝐡= π‘₯ 2 , 𝑦 2 mewn plΓ’n. Consider any two points 𝐴= π‘₯ 1 , 𝑦 1 , 𝐡= π‘₯ 2 , 𝑦 2 in a plane Y pellter rhwng 𝐴 a 𝐡 yw π‘₯ 2 βˆ’ π‘₯ 𝑦 2 βˆ’ 𝑦 The distance between 𝐴 and 𝐡 is π‘₯ 2 βˆ’ π‘₯ 𝑦 2 βˆ’ 𝑦 Graddiant y llinell 𝐴𝐡 yw 𝑦 2 βˆ’ 𝑦 1 π‘₯ 2 βˆ’ π‘₯ The gradient of the line 𝐴𝐡 is 𝑦 2 βˆ’ 𝑦 1 π‘₯ 2 βˆ’ π‘₯ 1 . Canolbwynt y llinell 𝐴𝐡 yw π‘₯ 1 + π‘₯ 2 2 , 𝑦 1 + 𝑦 The mid-point of the line 𝐴𝐡 is π‘₯ 1 + π‘₯ 2 2 , 𝑦 1 + 𝑦

4 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 1 / Exercise 1 Ar gyfer y parau o bwyntiau canlynol, darganfyddwch (i) y pellter rhwng y ddau bwynt; (ii) graddiant y llinell sy’n cysylltu’r ddau bwynt; (iii) canolbwynt y ddau bwynt. For the following pairs of points, find (i) the distance between the two points; (ii) the gradient of the line connecting the two points; (iii) the mid-point of the two points. (a) 𝐴(2, 1), 𝐡(6, 4). (b) 𝐴(3, 1), 𝐡(4, 6). (c) 𝐴(βˆ’3,2), 𝐡(9, 4). (ch) 𝐴(2, 5), 𝐡(βˆ’5,βˆ’3). (d) 𝐴(βˆ’10,βˆ’1), 𝐡(βˆ’2,βˆ’5).

5 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Atebion / Answers (a) (i) 5 (ii) (iii) (4, 2.5) (b) (i) (ii) 5 (iii) (3.5, 3.5) (c) (i) (ii) (iii) (3, 3) (ch) (i) (ii) (iii) (–1.5, 1) (d) (i) (ii) βˆ’ 1 2 (iii) (–6, –3)

6 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 2 / Exercise 2 Cwblhewch y tabl canlynol. Complete the following table. 𝑨 𝑩 Canolbwynt / Mid-point of 𝑨𝑩 (2, 8) (8, 14) (6, 10) (10, 12) (20, 14) (10, 5) (–2, 5) (5, 3) (7, –8) (14, –16) (–8, –5) (–3, 4) (–5, 1) (13, –2)

7 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Atebion / Answers Cwblhewch y tabl canlynol. Complete the following table. 𝑨 𝑩 Canolbwynt / Mid-point of 𝑨𝑩 (2, 8) (8, 14) (5, 11) (6, 10) (14, 14) (10, 12) (0, –4) (20, 14) (10, 5) (–2, 5) (12, 1) (5, 3) (21, –24) (7, –8) (14, –16) (–8, –5) (2, 13) (–3, 4) (31, –5) (–5, 1) (13, –2)

8 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ystyriwch unrhyw ddau bwynt 𝐴= π‘₯ 1 , 𝑦 1 , 𝐡= π‘₯ 2 , 𝑦 2 mewn plΓ’n. Mae’r ddau bwynt yma, os yn wahanol, yn diffinio llinell syth yn y plΓ’n. Consider any two points 𝐴= π‘₯ 1 , 𝑦 1 , 𝐡= π‘₯ 2 , 𝑦 2 in a plane. These two points, if different, define a line on the plane Mae’n bosib ysgrifennu hafaliad y llinell syth mewn tair ffordd wahanol. It is possible to write the equation of the straight line in three different ways. 𝑦=π‘šπ‘₯+𝑐 π‘Žπ‘₯+𝑏𝑦+𝑐=0 π‘¦βˆ’ 𝑦 1 =π‘š(π‘₯βˆ’ π‘₯ 1 )

9 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 3 / Exercise 3 Ym mhob un o’r canlynol, diffinir llinell trwy roi un pwynt ar y llinell a graddiant y llinell. Ysgrifennwch hafaliad y llinell ym mhob un o’r tair ffordd ar y sleid blaenorol. In each of the following, a line is defined by a point on the line and its gradient. Write the equation of the line in each of the three forms shown on the previous slide. (a) 𝐴 4, 6 , π‘š=3. (b) 𝐴 9, 15 , π‘š=βˆ’2. (c) 𝐴 βˆ’2,4 , π‘š=5. (ch) 𝐴 6,βˆ’2 , π‘š=0.5. (d) 𝐴 βˆ’5,βˆ’10 , π‘š=βˆ’0.2.

10 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Atebion / Answers π’š=π’Žπ’™+𝒄 𝒂𝒙+π’ƒπ’š+𝒄=0 π’šβˆ’ π’š 𝟏 =π’Ž(π’™βˆ’ 𝒙 𝟏 ) (a) 𝑦=3π‘₯βˆ’6 π‘¦βˆ’3π‘₯+6=0 π‘¦βˆ’6=3(π‘₯βˆ’4) (b) 𝑦=βˆ’2π‘₯+33 𝑦+2π‘₯βˆ’33=0 π‘¦βˆ’15=βˆ’2(π‘₯βˆ’9) (c) 𝑦=5π‘₯+14 π‘¦βˆ’5π‘₯βˆ’14=0 π‘¦βˆ’4=5(π‘₯+2) (ch) 𝑦=0.5π‘₯βˆ’5 π‘¦βˆ’0.5π‘₯+5=0 neu/π‘œπ‘Ÿ 2π‘¦βˆ’π‘₯+10=0 𝑦+2=0.5(π‘₯βˆ’6) (d) 𝑦=βˆ’0.2π‘₯βˆ’11 𝑦+0.2π‘₯+11=0 neu/π‘œπ‘Ÿ 5𝑦+π‘₯+55=0 𝑦+10=βˆ’0.2(π‘₯+5)

11 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Gadewch i’r llinellau 𝐿 1 ag 𝐿 2 gael graddiannau π‘š 1 ag π‘š 2 , yn Γ΄l eu trefn. Let the lines 𝐿 1 and 𝐿 2 have gradients π‘š 1 and π‘š 2 , respectively. Os yw 𝐿 1 ag 𝐿 2 yn baralel, yna mae π‘š 1 = π‘š 2 . If 𝐿 1 and 𝐿 2 are parallel, then π‘š 1 = π‘š 2 . Os yw 𝐿 1 ag 𝐿 2 yn berpendicwlar, yna mae π‘š 1 π‘š 2 =βˆ’1. Neu, mae’n bosib dweud bod un graddiant yn negatif cilydd y llall: π‘š 1 =βˆ’ 1 π‘š 2 a π‘š 2 =βˆ’ 1 π‘š If 𝐿 1 and 𝐿 2 are perpendicular, then π‘š 1 π‘š 2 =βˆ’1. Or, it is possible to say that one gradient is the negative reciprocal of the other: π‘š 1 =βˆ’ 1 π‘š 2 and π‘š 2 =βˆ’ 1 π‘š 1 .

12 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 4 / Exercise 4 Mae’r llinell syth 𝐿 1 yn cysylltu’r pwyntiau (–5, 12) a (8, 6). Mae’r llinell syth 𝐿 2 yn baralel i 𝐿 1 . Mae’r llinell syth 𝐿 3 yn berpendicwlar i 𝐿 1 . Beth yw graddiannau 𝐿 2 ag 𝐿 3 ? The straight line 𝐿 1 connects the points (–5, 12) and (8, 6). The straight line 𝐿 2 is parallel to 𝐿 1 . The straight line 𝐿 3 is perpendicular to 𝐿 1 . What are the gradients of 𝐿 2 and 𝐿 3 ?

13 Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ateb / Answer Mae’r llinell syth 𝐿 1 yn cysylltu’r pwyntiau (–5, 12) a (8, 6). Mae’r llinell syth 𝐿 2 yn baralel i 𝐿 1 . Mae’r llinell syth 𝐿 3 yn berpendicwlar i 𝐿 1 . Beth yw graddiannau 𝐿 2 ag 𝐿 3 ? The straight line 𝐿 1 connects the points (–5, 12) and (8, 6). The straight line 𝐿 2 is parallel to 𝐿 1 . The straight line 𝐿 3 is perpendicular to 𝐿 1 . What are the gradients of 𝐿 2 and 𝐿 3 ? Graddiant 𝐿 2 yw βˆ’ Graddiant 𝐿 3 yw The gradient of 𝐿 2 is βˆ’ The gradient of 𝐿 3 is


Download ppt "Geometreg Cyfesurynnau Cartesaidd"

Similar presentations


Ads by Google