Download presentation
Presentation is loading. Please wait.
1
Geometreg Cyfesurynnau Cartesaidd
Cartesian Co-ordinate Geometry @mathemateg /adolygumathemateg
2
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ganwyd RenΓ© Descartes ar y 15fed o Fawrth, 1596, yn Ffrainc. Defnyddiodd graffiau er mwyn cysylltu algebra efo geometreg. Mae graffiauβn defnyddio echelinau-π₯ ag π¦ yn cael eu galwβn graffiau Cartesaidd, ar ei Γ΄l. RenΓ© Descartes was born on the 15th of March, 1596, in France. He used graphs in order to connect algebra to geometry. Graphs that use π₯ and π¦ axes are named Cartesian graphs.
3
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ystyriwch unrhyw ddau bwynt π΄= π₯ 1 , π¦ 1 , π΅= π₯ 2 , π¦ 2 mewn plΓ’n. Consider any two points π΄= π₯ 1 , π¦ 1 , π΅= π₯ 2 , π¦ 2 in a plane Y pellter rhwng π΄ a π΅ yw π₯ 2 β π₯ π¦ 2 β π¦ The distance between π΄ and π΅ is π₯ 2 β π₯ π¦ 2 β π¦ Graddiant y llinell π΄π΅ yw π¦ 2 β π¦ 1 π₯ 2 β π₯ The gradient of the line π΄π΅ is π¦ 2 β π¦ 1 π₯ 2 β π₯ 1 . Canolbwynt y llinell π΄π΅ yw π₯ 1 + π₯ 2 2 , π¦ 1 + π¦ The mid-point of the line π΄π΅ is π₯ 1 + π₯ 2 2 , π¦ 1 + π¦
4
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 1 / Exercise 1 Ar gyfer y parau o bwyntiau canlynol, darganfyddwch (i) y pellter rhwng y ddau bwynt; (ii) graddiant y llinell syβn cysylltuβr ddau bwynt; (iii) canolbwynt y ddau bwynt. For the following pairs of points, find (i) the distance between the two points; (ii) the gradient of the line connecting the two points; (iii) the mid-point of the two points. (a) π΄(2, 1), π΅(6, 4). (b) π΄(3, 1), π΅(4, 6). (c) π΄(β3,2), π΅(9, 4). (ch) π΄(2, 5), π΅(β5,β3). (d) π΄(β10,β1), π΅(β2,β5).
5
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Atebion / Answers (a) (i) 5 (ii) (iii) (4, 2.5) (b) (i) (ii) 5 (iii) (3.5, 3.5) (c) (i) (ii) (iii) (3, 3) (ch) (i) (ii) (iii) (β1.5, 1) (d) (i) (ii) β 1 2 (iii) (β6, β3)
6
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 2 / Exercise 2 Cwblhewch y tabl canlynol. Complete the following table. π¨ π© Canolbwynt / Mid-point of π¨π© (2, 8) (8, 14) (6, 10) (10, 12) (20, 14) (10, 5) (β2, 5) (5, 3) (7, β8) (14, β16) (β8, β5) (β3, 4) (β5, 1) (13, β2)
7
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Atebion / Answers Cwblhewch y tabl canlynol. Complete the following table. π¨ π© Canolbwynt / Mid-point of π¨π© (2, 8) (8, 14) (5, 11) (6, 10) (14, 14) (10, 12) (0, β4) (20, 14) (10, 5) (β2, 5) (12, 1) (5, 3) (21, β24) (7, β8) (14, β16) (β8, β5) (2, 13) (β3, 4) (31, β5) (β5, 1) (13, β2)
8
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ystyriwch unrhyw ddau bwynt π΄= π₯ 1 , π¦ 1 , π΅= π₯ 2 , π¦ 2 mewn plΓ’n. Maeβr ddau bwynt yma, os yn wahanol, yn diffinio llinell syth yn y plΓ’n. Consider any two points π΄= π₯ 1 , π¦ 1 , π΅= π₯ 2 , π¦ 2 in a plane. These two points, if different, define a line on the plane Maeβn bosib ysgrifennu hafaliad y llinell syth mewn tair ffordd wahanol. It is possible to write the equation of the straight line in three different ways. π¦=ππ₯+π ππ₯+ππ¦+π=0 π¦β π¦ 1 =π(π₯β π₯ 1 )
9
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 3 / Exercise 3 Ym mhob un oβr canlynol, diffinir llinell trwy roi un pwynt ar y llinell a graddiant y llinell. Ysgrifennwch hafaliad y llinell ym mhob un oβr tair ffordd ar y sleid blaenorol. In each of the following, a line is defined by a point on the line and its gradient. Write the equation of the line in each of the three forms shown on the previous slide. (a) π΄ 4, 6 , π=3. (b) π΄ 9, 15 , π=β2. (c) π΄ β2,4 , π=5. (ch) π΄ 6,β2 , π=0.5. (d) π΄ β5,β10 , π=β0.2.
10
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Atebion / Answers π=ππ+π ππ+ππ+π=0 πβ π π =π(πβ π π ) (a) π¦=3π₯β6 π¦β3π₯+6=0 π¦β6=3(π₯β4) (b) π¦=β2π₯+33 π¦+2π₯β33=0 π¦β15=β2(π₯β9) (c) π¦=5π₯+14 π¦β5π₯β14=0 π¦β4=5(π₯+2) (ch) π¦=0.5π₯β5 π¦β0.5π₯+5=0 neu/ππ 2π¦βπ₯+10=0 π¦+2=0.5(π₯β6) (d) π¦=β0.2π₯β11 π¦+0.2π₯+11=0 neu/ππ 5π¦+π₯+55=0 π¦+10=β0.2(π₯+5)
11
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Gadewch iβr llinellau πΏ 1 ag πΏ 2 gael graddiannau π 1 ag π 2 , yn Γ΄l eu trefn. Let the lines πΏ 1 and πΏ 2 have gradients π 1 and π 2 , respectively. Os yw πΏ 1 ag πΏ 2 yn baralel, yna mae π 1 = π 2 . If πΏ 1 and πΏ 2 are parallel, then π 1 = π 2 . Os yw πΏ 1 ag πΏ 2 yn berpendicwlar, yna mae π 1 π 2 =β1. Neu, maeβn bosib dweud bod un graddiant yn negatif cilydd y llall: π 1 =β 1 π 2 a π 2 =β 1 π If πΏ 1 and πΏ 2 are perpendicular, then π 1 π 2 =β1. Or, it is possible to say that one gradient is the negative reciprocal of the other: π 1 =β 1 π 2 and π 2 =β 1 π 1 .
12
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ymarfer 4 / Exercise 4 Maeβr llinell syth πΏ 1 yn cysylltuβr pwyntiau (β5, 12) a (8, 6). Maeβr llinell syth πΏ 2 yn baralel i πΏ 1 . Maeβr llinell syth πΏ 3 yn berpendicwlar i πΏ 1 . Beth yw graddiannau πΏ 2 ag πΏ 3 ? The straight line πΏ 1 connects the points (β5, 12) and (8, 6). The straight line πΏ 2 is parallel to πΏ 1 . The straight line πΏ 3 is perpendicular to πΏ 1 . What are the gradients of πΏ 2 and πΏ 3 ?
13
Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry
Ateb / Answer Maeβr llinell syth πΏ 1 yn cysylltuβr pwyntiau (β5, 12) a (8, 6). Maeβr llinell syth πΏ 2 yn baralel i πΏ 1 . Maeβr llinell syth πΏ 3 yn berpendicwlar i πΏ 1 . Beth yw graddiannau πΏ 2 ag πΏ 3 ? The straight line πΏ 1 connects the points (β5, 12) and (8, 6). The straight line πΏ 2 is parallel to πΏ 1 . The straight line πΏ 3 is perpendicular to πΏ 1 . What are the gradients of πΏ 2 and πΏ 3 ? Graddiant πΏ 2 yw β Graddiant πΏ 3 yw The gradient of πΏ 2 is β The gradient of πΏ 3 is
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.