Presentation is loading. Please wait.

Presentation is loading. Please wait.

Oscillators: Analysis and Designs

Similar presentations


Presentation on theme: "Oscillators: Analysis and Designs"— Presentation transcript:

1 Oscillators: Analysis and Designs
Asst. Prof. Dr. Pipat Prommee Telecommunications Engineering Department KMITL Homepage: Asst .Prof. Dr.Pipat Prommee

2 Sinusoidal Oscillator Principle
Amplifier K H(s) Asst .Prof. Dr.Pipat Prommee

3 Unstable Network Functions
Inv. Laplace Inv. Laplace Inv. Laplace Asst .Prof. Dr.Pipat Prommee

4 Unstable Network Functions
Double Poles Asst .Prof. Dr.Pipat Prommee

5 Sinusoidal Oscillator Principle
No Input condition Asst .Prof. Dr.Pipat Prommee

6 2nd Order Polynomial-Based Oscillator
where and Asst .Prof. Dr.Pipat Prommee

7 Asst .Prof. Dr.Pipat Prommee
3rd Order Polynomial-Based Oscillator and Asst .Prof. Dr.Pipat Prommee

8 N - orders Cascaded Approach
For Example: n =3 Asst .Prof. Dr.Pipat Prommee

9 Asst. Prof. Dr. Pipat Prommee
Oscillators Designs Asst. Prof. Dr. Pipat Prommee Asst .Prof. Dr.Pipat Prommee

10 Example 1: Wein-Bridge Oscillator
Suppose k=3, the frequency is obtained Asst .Prof. Dr.Pipat Prommee

11 Example 2: Phase-Shift Oscillator
Suppose k=-29, the Freq. is obtained Asst .Prof. Dr.Pipat Prommee

12 Voltage-mode Lossy and Lossless Integrators
Lossy Integrators Lossless Integrators Asst .Prof. Dr.Pipat Prommee

13 Quadrature Oscillator
where and Asst .Prof. Dr.Pipat Prommee

14 Asst .Prof. Dr.Pipat Prommee
3rd Order Filter #1 3rd Order filter based on Lossy and Lossless Integrators Asst .Prof. Dr.Pipat Prommee

15 Principle of 3rd Order Oscillator #1 [2]
If Therefore Asst .Prof. Dr.Pipat Prommee

16 Asst .Prof. Dr.Pipat Prommee
OTA-based 3rd filter #1 Asst .Prof. Dr.Pipat Prommee

17 OTA-based 3rd Oscillator #1
Asst .Prof. Dr.Pipat Prommee

18 Asst .Prof. Dr.Pipat Prommee
3rd Order Filter #2 Asst .Prof. Dr.Pipat Prommee

19 3rd Order Oscillator #2 [2]
If Therefore Asst .Prof. Dr.Pipat Prommee

20 Asst .Prof. Dr.Pipat Prommee
Voltage Proportional Asst .Prof. Dr.Pipat Prommee

21 OTA-based 3rd Order filter #2
Asst .Prof. Dr.Pipat Prommee

22 OTA-based 3rd Order Oscillator #2
Asst .Prof. Dr.Pipat Prommee

23 OTA-based 3rd Order Oscillator #2
Asst .Prof. Dr.Pipat Prommee

24 CMOS based 3rd Order Oscillator #1
Asst .Prof. Dr.Pipat Prommee

25 Quarature Output of 1st order Oscillator
Asst .Prof. Dr.Pipat Prommee

26 Frequency against biased current and different C of 1st Oscillator
Asst .Prof. Dr.Pipat Prommee

27 Asst .Prof. Dr.Pipat Prommee
CMOS based 3rd Order Oscillator #2 Asst .Prof. Dr.Pipat Prommee

28 Asst .Prof. Dr.Pipat Prommee
Quarature Output Signal of 2nd order Oscillator Asst .Prof. Dr.Pipat Prommee

29 Asst .Prof. Dr.Pipat Prommee
Frequency against biased current and different C of 2nd Oscillator Asst .Prof. Dr.Pipat Prommee

30 Current-mode Integrator based on OTA
Lossy Integrators Lossless Integrators Asst .Prof. Dr.Pipat Prommee

31 Asst .Prof. Dr.Pipat Prommee
CMOS OTA Asst .Prof. Dr.Pipat Prommee

32 Current-mode OTA Oscillator #1 [4]
Asst .Prof. Dr.Pipat Prommee

33 Current-mode OTA Oscillator #2 [4]
Asst .Prof. Dr.Pipat Prommee

34 Current-mode OTA Oscillator Output [4]
Asst .Prof. Dr.Pipat Prommee

35 Current Controlled Current Conveyor (CCCII) [7]
Asst .Prof. Dr.Pipat Prommee

36 Asst .Prof. Dr.Pipat Prommee
OTA against CCCII X Y Z+ Z- CCCII Ib Vin IO Asst .Prof. Dr.Pipat Prommee

37 Current-mode Oscillator based on CCII [3]
Asst .Prof. Dr.Pipat Prommee

38 Asst .Prof. Dr.Pipat Prommee
Oscillator outputs Asst .Prof. Dr.Pipat Prommee

39 CCCII-based differentiator and Integrator
Lossy Differentator Lossy Integrator Asst .Prof. Dr.Pipat Prommee

40 N-order (odd) Oscillators [1]
Asst .Prof. Dr.Pipat Prommee

41 N-order (Even) Oscillators [1]
Asst .Prof. Dr.Pipat Prommee

42 Asst .Prof. Dr.Pipat Prommee
Oscillation Output Asst .Prof. Dr.Pipat Prommee

43 Asst .Prof. Dr.Pipat Prommee
References A.R. Vazquez, B.L. Barrnco, J.L. Huertas and E.S.Sinencio, “On the design of voltage-controlled sinusoidal oscillators using OTAs,” IEEE Trans. Circuits and Syst., Vol. 37, No. 2, Feb M. T. Abuelma’atti and M. A. Al-Qahtani, “A New Current-Controlled Multiphase SinusoidalOscillator Using Translinear Current Conveyors,” IEEE Trans. Circuits and Syst.-II, Vol. 45, No. 7, July 1998. S.J.G. Gift, “Multiphase Sinusoidal Oscillator Using Inverting-Mode Operational Amplifiers,” IEEE Trans. Instru. and Meas., Vol. 47, No. 4, Aug P. Prommee, K. Dejhan,“An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier,”International Journal of Electronics, Vol.89, no.5, pp , 2002. S. Maheshwari and I.A. Khan, “Current controlled third order quadrature oscillator,” IEE Proc. Circuits Devices Syst., Vol. 152, No. 6, December 2005. T. Tsukutani, Y. Sumi and Y. Fukui, “Electronically controlled current-mode oscillators using MO-OTAs and grounded capacitors,” Frequenz, Vol.60 pp , 2006. F. Seguin and A. Fabre, “New Second Generation Current Conveyor with Reduced Parasitic Resistance and Bandpass Filter Application,” IEEE Trans. Circuits and Syst.-I, Vol. 48, No. 6, June 2001. Asst .Prof. Dr.Pipat Prommee


Download ppt "Oscillators: Analysis and Designs"

Similar presentations


Ads by Google