Download presentation
Presentation is loading. Please wait.
Published byΔημήτηρ Λύκος Modified over 6 years ago
1
Growth Kinetics Byeong-Joo Lee Microstructure Evolution POSTECH - MSE
2
General Background ※ References:
1. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, "Introduction to Ceramics", John Wiley & Sons. Chap. 8. 2. Christian, section 56 & 54. 3. J. Burke, "The Kinetics of Phase Transformations in Metals," Pergamon Press. Chap. 6.
3
General Background Jeroen R. Mesters, Univ. of Lübeck Wikipedia
4
General Background
5
Objective Crystal Growth vs. Grain Growth vs. Precipitate Growth
Driving force & Rate Determining Step Parallel process vs. Serial Process Interface Reaction vs. Diffusion Controlled Process 4. Interface: Continuous Growth vs. Lateral Growth
6
Classification of Growth Process - Diffusion Controlled Growth
▷ Changes which involve long-range diffusional transport ▷ Assumptions local equilibrium at the interface : the concentration on either side of the interface is given by the phase diagram ※ for conditions under which this assumption might break down, see: Langer & Sekerka, Acta Metall. 23, 1225 (1975). capillarity effects are ignored. the diffusion coefficient is frequently assumed to be independent from concentration.
7
Classification of Growth Process - Interface-Reaction Controlled Growth
▷ Changes which do not involve long-range diffusional transport ex) growth of a pure solid grain growth - curvature driven kinetics recrystallization massive transformation martensitic transformation antiphase domain coarsening order-disorder transformation ※ Even phase transformations that involve composition changes may be interface-reaction limited. - local equilibrium is not applied at the interface.
8
Continuous Growth Lateral motion of steps
Interface-Reaction Controlled Growth - Mechanism □ Two types of IRC growth mechanism - Continuous growth and growth by a lateral migration of steps Continuous growth can only occur when the boundary is unstable with respect to motion normal to itself. - It can add material across the interface at all points with equal ease. - Comparison of the two mechanisms Continuous Growth Lateral motion of steps disordered interface ordered/singular interface diffuse interface sharp interface high driving force low driving force
9
Interface-Reaction Controlled Growth - Crystal Growth Mechanism
10
Interface-Reaction Controlled Growth - Growth of a pure Solid
▷ Lateral growth ex) solidification of materials with a high entropy of melting minimum free energy ⇔ minimum number of broken bond source of ledge of jog : (i) surface nucleation (ii) spiral growth (iii) twin boundary (i) surface nucleation : two-dimensional homogeneous nucleation problem existence of critical nucleus size, r* the growth rate normal to the interface ∝ nucleation rate ⇒ v ∝ exp ( - k2 /ΔTi ) (ii) spiral growth : ⇒ v = k3·(ΔTi)2 (iii) twin boundary : similar to the spiral growth mechanism
11
Interface-Reaction Controlled Growth - Growth of a pure Solid
ex) single crystal growth during solidification or deposition ▷ Continuous growth reaction rate in a thermally activated process (in Chemical Reaction Kinetics) ⇒ (ν/RT)·exp (-ΔG*/RT)·ΔGdf a thermally activated migration of grain boundaries ⇒ v = M·ΔGdf for example, for solidification ⇒ v = k1․ΔTi
12
Interface-Reaction Controlled Growth - Growth of a pure Solid
▷ Heat Flow and Interface Stability (for pure metal) In pure metals solidification is controlled by the conduction rate of the latent heat. Consider solid growing at a velocity v with a planar interface into a superheated liquid. Heat flux balance equation KsT's = KLT'L + v Lv when T'L < 0, planar interface becomes unstable and dendrite forms. Consider the tip of growing dendrite and assume the solid is isothermal (T's = 0). T'L is approximately given by ΔTc/r
13
Interface-Reaction Controlled Growth - Grain growth in polycrystalline solids
▷ Reaction rate · jump frequency νβα = νo exp(-ΔG*/RT) ναβ = νo exp(-[ΔG*+ΔGdf]/RT) ⇒ νnet = ν = νo exp(-ΔG*/RT) (1 - exp(-ΔGdf/RT)) if ΔGdf << RT ∴ ν 〓 νo exp(-ΔG*/RT)·ΔGdf / RT ▷ Growth rate, u u = λν ; λ - jump distance
14
Interface-Reaction Controlled Growth - Grain growth in polycrystalline solids
- no composition change & no phase (crystal structure) change - capillary pressure is the only source of driving force · α and β is the same phase · ∴ : normal growth equation ▶ Recrystallization (primary) - no composition change & no phase (crystal structure) change - stored strain energy is the main source of driving force · α and β is the same phase, but α has higher energy (strain energy)
15
Interface-Reaction Controlled Growth - Grain growth in polycrystalline solids
▶ Phase Transformations - no composition change & phase (crystal structure) change - Gibbs energy difference is the main source of driving force - ex) Massive transformation in alloys, Polymorphism ※ Linear relationship between interfacial velocity and driving force are common but not the rule.
16
Diffusion Controlled Growth - Precipitate Growth
17
Diffusion Controlled Growth - Precipitate Growth
※ As a thermally activated process with a parabolic growth law · v ∝ ΔXo · x ∝ t 1/2
18
Diffusion Controlled Growth - Precipitate Growth
19
Diffusion Controlled Growth - Effect of interfacial energy
20
Diffusion Controlled Growth - Lengthening of Needles (spherical tip)
21
Diffusion Controlled Growth - Growth of a lamella eutectic/eutectoid
※ Exactly the same results can be obtained when considering capillarity effect at the tip of each layer
22
Diffusion Controlled Growth - Growth of a lamella eutectic/eutectoid
The interfacial energy serves as an energy barrier, and there exists a critical size in the interlamella spacing S.
23
Diffusion Controlled Growth - Coarsening of Precipitates (Ostwald ripening)
24
Diffusion Controlled Growth - Coarsening of Precipitates (Ostwald ripening)
25
Diffusion Controlled Growth - Coarsening of Precipitates (Ostwald ripening)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.