Download presentation
Presentation is loading. Please wait.
Published byLeslie Armstrong Modified over 6 years ago
1
Research Institute for Future Media Computing
未来媒体技术与计算研究所 Research Institute for Future Media Computing Tutorial 3. Key Operation on Signals: Convolution 江健民,国家千人计划特聘教授 深圳大学未来媒体技术与计算研究所所长 Office Room: 409
2
Problem: Given two sequences x(n)={1, 3, 2, -3, 0, 2, -1, 0, -2, 3, -2, 1 …}(N1=?), and h(n)={1, 0, 1} (N2=3), calculate the convolution of these two sequences. Solution via Overlap-add: Divide x(n) into sections of length N1=6; x1(n)={1, 3, 2, -3, 0, 2}; x2(n)={-1, 0, -2, 3, -2, 1}; N=N1+N2-1 = 8 = 2d (d=3), satisfying the requirements for use of a radix-2 FFT; Apply FFT to calculate circular convolution, x1(n)*h(n) and x2(n)*h(n), and then overlap-add to derive the linear convolution of x(n)*h(n).
3
Specific Solutions: Augmenting zeros to x1(n), x2(n), and h(n) as follows: x’1(n)={1, 3, 2, -3, 0, 2, 0, 0}; x’2(n)={-1, 0, -2, 3, -2, 1, 0, 0}; h’(n)={1, 0, 1, 0, 0, 0, 0, 0} y1(0)= h’(0)x’1(0)=1; y1(1)=h’(0)x’1(1)+h’(1)x’1(0)=3; y1(2)=h’(0)x’1(2)+h’(1)x’1(1)+h’(0)x’1(0)=3; y1(3)=h’(0)x1(3)+h’(1)x1(2)+h’(2)x1(1)+h’(1)x1(2)…=0; … Y1(n)={1, 3, 3, 0, 2, -1, 0, 2}; y2(n)={-1, 0, -3, 1, -4, 4, -2, -1}
4
Y1(n)={1, 3, 3, 0, 2, -1, 0, 2}; y2(n)={0, 0, 0, 0, 0, 0, -1, 0, -3, 1, -4, 4, -2, -1} Y(n)=y1(n)+y2(n) = {1, 3, 3, 0, 2, -1, -1, 2, -3, 1, -4, 4, -2, -1} Exercise: Use linear convolution to verify that the above results are correct.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.