Presentation is loading. Please wait.

Presentation is loading. Please wait.

Le spectre des GRBs dans le modèle EMBH

Similar presentations


Presentation on theme: "Le spectre des GRBs dans le modèle EMBH"— Presentation transcript:

1 Le spectre des GRBs dans le modèle EMBH
Pascal Chardonnet LAPTH + Collaboration Roma La Sapienza POLAR - January,

2 Discovery of GRBs GRBs unknown until the end of ‘60 neither predicted by astrophysical or cosmological models Discovery by chance by Vela satellite (1973) I revolution (BATSE satellite, ‘90): isotropy of spatial distribution II revolution (BeppoSAX, 1997): discovery of afterglow X cosmological distance (z order of 1)

3 The EMBH model 1) Spherical symmetry for all the phases.
2) Magnetohydrodynamics and pair equations for the evolution of the plasma in the optically thick phase. Fully radiative condition for the energy emission in the afterglow. 3) nism = 1 particle/cm3 i.e. a constant density interstellar medium. - “Relative Space Time Transformations” (RSTT) paradigm (Ruffini et al., ApJ 555, L107, 2001) - “Interpretation of the Burst Structure” (IBS) paradigm (Ruffini et al., ApJ 555, L113, 2001) - “GRB-supernova Time Sequence” (GSTS) paradigm (Ruffini et al., ApJ 555, L117, 2001)

4 inhomogeneity of interstellar medium
Assumptions Spherical symmetry “Fully radiative” condition Temporal variability of light curve due to inhomogeneity of interstellar medium Thermal distribution of energy in comoving frame

5 Parameters of the model
Edya is the total energy emitted by source B= MBc2/Edya parametrizes baryonic matter protostellar not collapsed R = Aeff/Atot indicates the porosity of interstellar medium <nism> is the particle number density of interstellar medium Edya B

6 Temporal structure of GRB
Collision with baryonic remnant Increase of opacity of pulse Conversion of internal energy in kinetic energy Edya Short GRB Long GRB

7 The bolometric luminosity of the source
Where: De = internal energy developed in the ABM - ISM collision. L = g (1 - (v/c) cosJ) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

8 Bolometric light curve
Edya= 4.83 ´1053 erg B = 3.0 ´10-3

9 GRB 991216 BATSE noise threshold
Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2001b, ApJ, 555, L113

10 GRB A B C D

11 Temporal substructure of peak
D

12 Emitted luminosity Thermal distribution of energy in comoving system: Tarris the temperature of radiation emitted by dS and observed on the Earth

13 Luminosity and spectrum:GRB991216
Peak Afterglow c2 = 0.497 GRB , , , , ,…

14

15

16 Hard-to-Soft evolution
Spectral evolution Hard-to-Soft evolution Time integrated spectrum Non-thermal observed spectrum GRB , , , , ,…

17 Swift era Model verified in a precedently unobserved temporal window ( sec) Structure of light curve afterglow simply explained the claimed breaks in light curves GRB050315

18 Conclusions The model presented builts the whole temporal evolution of the GRB, from the progenitor to the non-relativistic phase of the afterglow. Interpretation of temporal structure of GRB: P-GRB e E-APE. The temporal variability of light curve traces the inomogeneities of ISM. Afterglow observations are compatible with thermal spectrum in pulse comoving system. No polarization predicted

19 Equations for afterglow
In the laboratory system with

20 Arrival time (ta) vs. emission time (t)
Power-law slope in the afterglow: Approximate ta computation: Exact ta computation: The observed one is: ± 0.067 (Halpern et al, 2000) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2002a, A&A, submitted to

21 Power law of Lorentz g factor (I)
Inelastic collision of expanding shell with an infinitesimally thick shell of ISM of mass dm at rest. Energy-momentum conservation and increment of mass: from 1) 3) g0 >> g>> 1

22 Power law of Lorentz g factor (II)
B=10-3 For g0 ~200, power law different from the predicted one (g0 >> g >> 1 not satisfied). The predicted power laws in limits adiabatic and fully radiative are reached only when g tends to infinity and only in a limited region. B=10-6

23 Prototype GRB One of the most energetic GRB ever observd: z = 1.0. Details on temporal structure by BATSE and on afterglow by satellites R-XTE and Chandra (Iron lines). Power law index for afterglow: n= ±

24 GRB 991216 - IBS paradigm BATSE noise threshold
Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2001b, ApJ, 555, L113

25 GRB 980425 - SN1998bw: A newly formed neutron star
(Pian) The newly formed neutron star:

26 The luminosity of GRB 030329 and SN 2003dh in the EMBH model

27 The ISM inhomogeneity “mask”
<nism> = 1 particle/cm3 i.e. an interstellar medium with variable density but average density of 1 particle/cm3. g = 139.9 g = 200.5 DR= 1015 cm g = 265.4 g = 303.8 g = 57.23 g = 56.24

28 The ABM pulse visible area
Invisible Visible

29 The observed luminosity: two different time scales
t is the photon emission time from the source. tad is the photon arrival time at the detector. Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001)

30 Arrival time ta vs. emission time t
Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

31 Arrival time ta vs. emission time t
Afterglow power-law slope for GRB : Approximate ta computation: Exact ta computation: Observed slope: ± 0.067 (Halpern et al, 2000) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

32 Angular dispersion Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

33 The Equitemporal Surfaces
Constant speed (r = vt): Ellipsoids of constant eccentricity v/c Numerical integration General case: Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

34 ABM Pulse visible area Invisible Visible
Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

35 The bolometric luminosity of the source
Where: De = internal energy developed in the ABM - ISM collision. L = g (1 - (v/c) cosJ) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

36 Arrival time ta vs. emission time t
+ D R r a 1 £ g £ 310 t R D t a t t + D r g @ 4 Rees, Nature, 211, 468, (1966) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

37 Relativistic contraction or classical Doppler effect?
Doppler contraction: where: - g is the gamma Lorentz factor of the moving source, - T0 is the period of the radiation measured in the comoving frame, - T is the period of the radiation measured by an observer at rest. The arrival time relation: is then just a classical Doppler contraction and has nothing to do with special relativistic effects.

38 The initial conditions in the EMBH model:
The Dyadosphere +Q -Q Preparata, Ruffini, Xue, 1998, A&A 338, L87 see also Ruffini, Vitagliano, Xue, in preparation + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - The initial conditions in the EMBH model: e+e- plasma

39 R. Ruffini, J.A. Wheeler, “Introducing the Black Hole”, Physics Today, January 1971

40 Theoretical background of the EMBH model
+ - Heisenberg, Euler, 1935 Schwinger, 1951 Christodoulou, Ruffini, 1971 Damour & Ruffini 1974 In a Kerr-Newmann black hole vacuum polarization process occurs if 3.2MSun £ MBH £ 7.2·106MSun Maximum energy extractable 1.8·1054 (MBH/MSun) ergs “…naturally leads to a most simple model for the explanation of the recently discovered g-rays bursts”

41 Theoretical model GRBs originate from the vacuum polarization process á la Heisenberg-Euler-Schwinger in the space-time surrounding a non-rotating electromagnetic black hole Collision PEMB pulse ABM pulse PEM pulse

42 Observations Irregularity of temporal profile of single event and variability of temporal profile between different events Bimodal distribution of duration Observed spectrum non-thermal..

43 The g Lorentz factor Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L113, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

44 Arrival time ta vs. emission time t
D D D t a t + D t D t a t t + D r g @ 4 Dta = Dt Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

45 GRB BATSE noise threshold

46 The “Equitemporal” surfaces
Invisible region


Download ppt "Le spectre des GRBs dans le modèle EMBH"

Similar presentations


Ads by Google