Download presentation
Presentation is loading. Please wait.
1
Chapter 5. Sensitivity Analysis
Investigate the dependence of optimal solution on changes of problem data. (1) range of data variation for which current basis remains optimal (2) Reoptimize after changes of data. Linear Programming 2015
2
5.1 Local sensitivity analysis
Current basis optimal if ๐ต โ1 ๐โฅ0, ๐ โฒ โ ๐ ๐ต โฒ ๐ต โ1 ๐ดโฅ0 (a) new variable added min ๐ โฒ ๐ฅ+ ๐ ๐+1 ๐ฅ ๐+1 ๐ด๐ฅ+ ๐ด ๐+1 ๐ฅ ๐+1 =๐ ๐ฅโฅ0 ๐ฅ, ๐ฅ ๐+1 = ๐ฅ โ , 0 is a b.f.s., check if ๐ ๐+1 = ๐ ๐+1 โ ๐ ๐ต โฒ ๐ต โ1 ๐ด ๐+1 โฅ0 If ๐ ๐+1 โฅ0, current solution optimal. If ๐ ๐+1 <0, add the new column to the tableau and reoptimize starting from the current basis ๐ต. Linear Programming 2015
3
(b) new inequality added. Add ๐ ๐+1 โฒ ๐ฅโฅ ๐ ๐+1
If ๐ ๐+1 โฒ ๐ฅ โ โฅ ๐ ๐+1 , ๐ฅ โ still optimal. Otherwise, let ๐ ๐+1 โฒ ๐ฅโ ๐ฅ ๐+1 = ๐ ๐+1 , ๐ฅ ๐+1 โฅ0. New basis ๐ต = ๐ต 0 ๐โฒ โ1 . ( ๐ต ๐ฅ ๐ฅ ๐+1 = ๐ ๐ ๐+1 ) New basic solution is ๐ฅ โ , ๐ ๐+1 โฒ ๐ฅ โ โ ๐ ๐+1 , primal infeasible. Dual feasibility? (reduced costs not changed) ๐ต โ1 = ๐ต โ1 0 ๐โฒ ๐ต โ1 โ1 ๏ ๐ โฒ ,0 โ ๐ ๐ต โฒ ,0 ๐ต โ1 0 ๐โฒ ๐ต โ1 โ1 ๐ด 0 ๐ ๐+1 โฒ โ1 = ๐ โฒ โ ๐ ๐ต โฒ ๐ต โ1 ๐ด, 0 โฅ0 ๐ ๐ต โฒ ๐ต โ1 , 0 Linear Programming 2015
4
Use dual simplex, constraints in current tableau is
๐ต โ1 ๐ด 0 ๐ ๐+1 โฒ โ1 = ๐ต โ1 0 ๐โฒ ๐ต โ1 โ1 ๐ด 0 ๐ ๐+1 โฒ โ1 = ๐ต โ1 ๐ด 0 ๐โฒ ๐ต โ1 ๐ดโ ๐ ๐+1 โฒ 1 Or we perform elementary row operations on the tableau to make the coefficients of the basic variables in the added constraint become 0. (after making the coefficient of ๐ฅ ๐+1 as 1 by multiplying โ1 on both sides) (see ex. 5.2.) Note: dual vector ( ๐ โฒ, ๐ ๐+1 ) can also be obtained as follows. ( ๐ โฒ , ๐ ๐+1 ) ๐ต = ๐ ๐ต ๏ ( ๐ โฒ , ๐ ๐+1 ) ๐ต 0 ๐โฒ โ1 = ๐ ๐ต โฒ 0 ๏ ๐ โฒ๐ต+ ๐ ๐+1 ๐โฒ= ๐ ๐ต โฒ โ ๐ ๐+1 =0 ๏ ๐ ๐ ๐+1 = ๐ โ 0 Hence dual variable for added constraint = 0, original dual variable values not changed ๏ No change in reduced costs. Linear Programming 2015
5
Add ๐ ๐+1 โฒ ๐ฅ= ๐ ๐+1 ( violated by ๐ฅ โ )
(c) new equality added. Add ๐ ๐+1 โฒ ๐ฅ= ๐ ๐+1 ( violated by ๐ฅ โ ) ๐ โ 0 dual feasible, but may not have a primal basic solution. Instead of finding new ๐ต , solve ( assumning ๐ ๐+1 โฒ ๐ฅ โ > ๐ ๐+1 ) min ๐ โฒ ๐ฅ+๐ ๐ฅ ๐+1 ๐ด๐ฅ =๐ ๐ ๐+1 โฒ ๐ฅโ ๐ฅ ๐+1 = ๐ ๐+1 ๐ฅโฅ0, ๐ฅ ๐+1 โฅ0 Add ๐ฅ ๐+1 to basis (same as (b)), get primal b.f.s and use primal simplex Remark : See โLinear Programmingโ, V. Chvatal, Freeman, for reoptimization approaches for bounded variable LP problem (Chapter 10. Sensitivity Analysis). Linear Programming 2015
6
No changes in reduced costs. But need ๐ต โ1 ๐ ๏ฎ ๐ต โ1 ๐+๐ฟ ๐ ๐ โฅ0
(d) changes in ๐ ๐ ๏ฎ ๐+๐ฟ ๐ ๐ No changes in reduced costs. But need ๐ต โ1 ๐ ๏ฎ ๐ต โ1 ๐+๐ฟ ๐ ๐ โฅ0 Let ๐ be the ๐โ๐กโ column of ๐ต โ1 . ๐ต โ1 ๐+๐ฟ ๐ ๐ = ๐ฅ ๐ต +๐ฟ๐โฅ0, find range of ๐ฟ. If ๐ฟ out of range, use dual simplex to reoptimize. Linear Programming 2015
7
(e-1) ๐ฅ ๐ nonbasic. ๐ ๐ ๏ฎ ๐ ๐ +๐ฟ primal feasibility not affected.
(e) changes in ๐ (e-1) ๐ฅ ๐ nonbasic. ๐ ๐ ๏ฎ ๐ ๐ +๐ฟ primal feasibility not affected. ๐ ๐ต โฒ ๐ต โ1 ๐ด ๐ โค ๐ ๐ +๐ฟ ๏ ๐ฟโฅโ ๐ ๐ (e-2) ๐ฅ ๐ basic (suppose ๐=๐ต(๐) ) ๐ ๐ต ๏ฎ ๐ ๐ต +๐ฟ ๐ ๐ optimality condition : ๐ ๐ต +๐ฟ ๐ ๐ โฒ ๐ต โ1 ๐ด ๐ โค ๐ ๐ , โ ๐โ ๐ ๏ ๐ ๐ต โฒ ๐ต โ1 ๐ด ๐ +๐ฟ ๐ ๐ โฒ ๐ต โ1 ๐ด ๐ โค ๐ ๐ ๏ ๐ฟ ๐ ๐๐ โค ๐ ๐ โ ๐ ๐ต โฒ ๐ต โ1 ๐ด ๐ = ๐ ๐ ( ๐ ๐๐ =๐โ๐กโ entry of ๐ต โ1 ๐ด ๐ ) Note that, for basic variables except ๐, have ๐ ๐๐ =0 Hence only need to check the range for nonbasic ๐ฅ ๐ โฒ ๐ Linear Programming 2015
8
(f) changes in nonbasic column ๐ด ๐ ๐ ๐๐ ๏ฎ ๐ ๐๐ +๐ฟ
Also may think that we have ๐ฟ remaining as the coefficient of ๐ฅ ๐ in 0-th row with the optimal basis ๐ต. Need to pivot to make the coefficient 0. Then the coefficients of nonbasic variables in 0-th row are affected. We need the range of ๐ฟ which makes the coefficient of nonbasic variables nonnegative. Ex) ๐ฅ 1 = ๐ฅ 1 = ๐ฅ 2 = ๐ฅ 2 = (f) changes in nonbasic column ๐ด ๐ ๐ ๐๐ ๏ฎ ๐ ๐๐ +๐ฟ ๐ ๐ โ๐โฒ ๐ด ๐ +๐ฟ ๐ ๐ โฅ0 ๏ ๐ ๐ โ๐ฟ ๐ ๐ โฅ0 Linear Programming 2015
9
5.2. Global dependence on ๐ Investigate the change of optimal value as a function of ๐ Let ๐ ๐ = ๐ฅโ ๐
๐ :๐ด๐ฅ=๐, ๐ฅโฅ0 ๐= ๐โ ๐
๐ :๐ ๐ is nonempty = ๐ด๐ฅ:๐ฅโฅ0 (convex) Define ๐น ๐ = min ๐ฅโ๐(๐) ๐ โฒ ๐ฅ ( called value function) Assume dual feasible set ๐: ๐ โฒ ๐ดโค๐โฒ is nonempty. ๏ ๐น(๐) finite โ ๐โ๐ Suppose at ๐ โ โ๐, โ nondegenerate optimal solution to primal. ( ๐ฅ ๐ต = ๐ต โ1 ๐) From nondegeneracy assumption, current basis ๐ต is optimal basis for small changes in ๐. ๏ ๐น ๐ = ๐ ๐ต โฒ ๐ต โ1 ๐= ๐ โฒ ๐ for ๐ close to ๐ โ ๏ ๐น(๐) is a linear function of ๐ near ๐ โ and gradient is ๐. Linear Programming 2015
10
pf) Let ๐ 1 , ๐ 2 โ๐. ๐น ๐ 1 =๐โฒ ๐ฅ 1 , ๐น ๐ 2 =๐โฒ ๐ฅ 2 .
Thm 5.1 : ๐น(๐) is convex on ๐. pf) Let ๐ 1 , ๐ 2 โ๐. ๐น ๐ 1 =๐โฒ ๐ฅ 1 , ๐น ๐ 2 =๐โฒ ๐ฅ 2 . For ๐ฆ=๐ ๐ฅ 1 + 1โ๐ ๐ฅ 2 , ๐โ 0,1 , have ๐ด๐ฆ=๐ ๐ 1 + 1โ๐ ๐ 2 ๐ฆ feasible solution when ๐ is ๐ ๐ 1 + 1โ๐ ๐ 2 ๏ ๐น ๐ ๐ 1 + 1โ๐ ๐ 2 โค ๐ โฒ ๐ฆ=๐๐โฒ ๐ฅ 1 + 1โ๐ ๐โฒ ๐ฅ 2 =๐๐น ๐ โ๐ ๐น( ๐ 2 ) ๏ Different reasoning using dual problem max ๐ โฒ ๐, ๐ โฒ ๐ดโค๐โฒ with the assumption that dual feasibility holds. Then, strong duality holds for all ๐โ๐. Hence ๐น ๐ = ๐ ๐ โฒ ๐ for some extreme point ๐ ๐ in dual. ( ๐ด is full row rank, hence dual has extreme point if feasible) ๏ ๐น(๐)= max ๐=1,โฆ,๐ ๐ ๐ โฒ ๐ , ๐โ๐ max of linear functions ๏ piecewise linear convex. Linear Programming 2015
11
Now consider ๐= ๐ โ +๐๐, ๐โ๐
๐ ๐ =๐น ๐ โ +๐๐
๐ ๐ =๐น ๐ โ +๐๐ ๐ ๐ = max ๐=1,โฆ,๐ ๐ ๐ โฒ ๐ โ +๐๐ , ๐ โ +๐๐โ๐ max of affine functions ๐(๐) ๐ 1 โฒ ๐ โ +๐๐ ๐ 3 โฒ ๐ โ +๐๐ ๐ 2 โฒ ๐ โ +๐๐ ๐ ๐ 1 ๐ 2 Figure 5.1 Linear Programming 2015
12
5.4. Global dependence on ๐ Optimal cost variation depending on ๐. Assume primal feasible. Let ๐ ๐ = ๐: ๐ โฒ ๐ดโค๐โฒ , ๐= ๐โ ๐
๐ :๐ ๐ is nonempty ๐ is convex set. ( If ๐ 1 , ๐ 2 โ๐, โ ๐ 1 , ๐ 2 such that ๐ 1 โฒ ๐ดโค ๐ 1 , ๐ 2 โฒ ๐ดโค ๐ 2 . ๐ ๐ 1 โฒ + 1โ๐ ๐ 2 โฒ ๐ดโค๐ ๐ 1 + 1โ๐ ๐ 2 for ๐โ 0,1 ๏ฎ ๐ ๐ 1 + 1โ๐ ๐ 2 โ๐) If ๐โ๐ ๏ dual infeasible, primal feasible ๏ primal unbounded ( โโ ) ๐โ๐ ๏ finite optimal ( ๐บ(๐) ) ๐บ ๐ = min ๐=1,โฆ,๐ ๐โฒ ๐ฅ ๐ ( ๐ฅ ๐ : b.f.s. of primal ) ๏ ๐บ(๐) is piecewise linear concave on ๐ If ๐ฅ ๐ is unique optimal when ๐= ๐ โ , then ๐ โ โฒ ๐ฅ ๐ < ๐ โ โฒ ๐ฅ ๐ , โ ๐โ ๐ ๐ฅ ๐ still optimal near ๐ โ , ๐บ ๐ =๐โฒ ๐ฅ ๐ , and gradient of ๐บ(๐) is ๐ฅ ๐ . Linear Programming 2015
13
Thm 5.3: Consider a feasible LP in standard form.
In summary, Thm 5.3: Consider a feasible LP in standard form. (a) The set ๐ of all ๐ for which the optimal cost is finite, is convex. (b) The optimal cost ๐บ(๐) is a concave function of ๐ on the set ๐. (c) If for some value of ๐ the primal problem has a unique optimal solution ๐ฅ โ , then ๐บ is linear in the vicinity of ๐ and its gradient is equal to ๐ฅ โ . Linear Programming 2015
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.