Download presentation
Presentation is loading. Please wait.
Published byHadi Iskandar Modified over 6 years ago
1
Review: Prospects of detection of relic antineutrinos by resonant absorption in electron capturing nuclei. J D Vergados & Yu N Novikov, J. Phys. G: Nucl. Part. Phys. 41 (2014) Kim, Hanbeom
2
Introduction The relic neutrino The cosmic neutrino background
Analogous to the cosmic background radiation Neutrino decoupling about 1 second after the Big Bang, 1010 K Very low average energy πΈ π β eV (corresponding to T = 1.95 K) (during the calculation, πΈ π β eV ) KIMS
3
Introduction Antineutrino absorption Ordinary electron capture
Exothermic Week interaction π π + π β + π + βπ π π +(π΄,π, π π )β (π΄,πβ1, π π β1) β Ordinary electron capture π + + π β βπ+ π π KIMS
4
The Formalism Cross section for a neutrino of given velocity Ο
π πΈ π =2π 1 π£ ππΈ πΈ π₯ nuc 2 π π 2 πΊ πΉ 2 2 πΏ πΈ π + π π +Ξβ πΈ π₯ βπ πΈ π +πβ₯Ξ+ π π π π β1 eV ππ: electron wavefunction Ξ: mass difference of the two neutral atoms π: electron binding energy πΈπ₯: final state energy πΊπΉ: Fermiβs constant KIMS
5
The Formalism π π πΈ π = Ξ¦ π π πΈ π = π π ( π 0 )2π ππΈ πΈ π₯ nuc 2 π π 2 πΊ πΉ 2 2 πΏ πΈ π + π π +Ξβ πΈ π₯ βπ π= π π πΈ π π πΈ π π πΈ π =π π π 2π ππΈ πΈ π₯ nuc 2 π π 2 πΊ πΉ 2 2 π( πΈ π₯ +πβ π π βΞ) π= π π ( π 0 )/ π π π πΈ = 1 π π 0 π β πΈ π π 0 , π π 0 =1.5Γ 10 β4 eV π π ( π 0 ): the density of neutrinos in our vicinity π π : the relic neutrino density π(πΈ): neutrino energy distribution (gravitationally bound) KIMS
6
The Formalism Neutrino capture
π= π π πΈ π π πΈ π π πΈ π =2ππ ππΈ πΈ π₯ nuc πΊ πΉ π π π π 0 π β πΈ π₯ +πβ π π βΞ π π π π Electron capture with the final state energy πΈ π₯ β² π πβcapture = 1 2π ππΈ πΈ π₯ β² nuc 2 π π πΊ πΉ (Ξβ πΈ π₯ β² βπ) 2 π π π π = π π πβcapture = 2π ππΈ πΈ π₯ nuc 2 ππΈ πΈ π₯ β² nuc 2 π π π (Ξβ πΈ π₯ β² βπ) 2 π π 0 π β πΈ π₯ +πβ π π βΞ π π 0 KIMS
7
The Formalism Let π= πΈ π₯ +πβ π π βΞ
π π πβcapture = 2π ππΈ πΈ π₯ nuc 2 ππΈ πΈ π₯ β² nuc 2 π π π (Ξβ πΈ π₯ β² βπ) 2 π π 0 π β π π π 0 Choose πΈ π₯ β²β πΈ π₯ since πΈ π₯ >ββπ+ π π , πΈ π₯ <ββπ Given a very fine setting: πβπ π 0 β 10 β3 eV,Ξβ πΈ π₯ β² βπ=100 keV and known parameters: π π β56 cm β3 & assuming nuclear matrix elements of the same order π π πβcapture =0.4Γ 10 β11 π KIMS
8
The Formalism The Uncertainty Principle
Suppose that there is a resonance in the final nucleus at an energy π above the value Ξβ π+ π π with a width Ξ= π 1+πΏ , πΏβͺ1 πΏ πΈ π + π π +Ξβ πΈ π₯ βπ β 2 π Ξ ( πΈ π₯ β(Ξβπ+π+ π π )) 2 + ( Ξ 2 ) 2 Integrate from πΈ π₯ =Ξβπ+ π π to πΈ π₯ =Ξβπ+ π π +Ξ KIMS
9
The Formalism Antineutrino capture
π=2ππ ππΈ πΈ π₯ nuc πΊ πΉ π π π π 0 π β πΈ π₯ +πβ π π βΞ π π π π β2ππ ππΈ πΈ π₯ nuc πΊ πΉ π π π π 1 π π 0 πΎ π½,πΏ πΎ π½,πΏ =β 1 π π π β 1 2 π πΏ+1 π½βπ½ β πΈ 1 1β π 2 πΏ+1 π½ + π π πΏ+1 π½ πΈ 1 1β π 2 πΏ+1 π½ β πΈ π πΏ+ 1+2π π½ + πΈ πΏ+1 βπβ 2 πΏ+1 π½ + π π πΏ+1 π½ πΈ 1 1β π 2 πΏ+1 π½ β πΈ π πΏ+ 1+2π π½ β πΈ 1 1β π 2 πΏ+1 π½ + π π πΏ+1 π½ πΈ 1 1β π 2 πΏ+1 π½ β πΈ π πΏ+ 1+2π π½ + πΈ πΏ+1 βπβ 2 πΏ+1 π½ πΈ γ
= 1 β π βπ§π‘ π‘ π ππ‘ ,π½= π π π 0 KIMS
10
The Formalism Electron capture
π πβcapture = 1 2π ππΈ πΈ π₯ β² nuc 2 π π πΊ πΉ (Ξβ πΈ π₯ β² βπ) 2 β 1 2π ππΈ πΈ π₯ β² nuc 2 π π πΊ πΉ π 0 2 Ξ( π π 0 ,πΏ) Ξ π π 0 ,πΏ = 4 π π π πΏ πΏ+1 + tan β πΏ+1 β tan β β 4 π π π πΏ(1β πΏ) KIMS
11
The Formalism KIMS
12
The Formalism π π πβcapture = (2π) 3 π π π π π π 0 πΎ π½,πΏ Ξ π π 0 ,πΏ Average energy available for de- excitation after ordinary πβcapture= Ξβπ+ π , π =π 4 π 3 5 πΏ(1β πΏ) KIMS
13
Some Results π π 0 β 10 β3 eV, π π β56 cm β3 β π π π π π 0 =1.6Γ 10 β13 Ξ΅/keV Ξ΄ 0.02 0.04 0.06 0.08 0.10 0.4 N/N(e-capture)/10-17ΞΎ 10.9 5.68 3.92 3.04 2.56 0.1 6.96 3.60 2.52 1.96 1.64 0.05 5.56 2.88 2.00 1.56 1.32 KIMS
14
Some Results (7.7Γ 10 β22 , 5.8Γ 10 β23 , 1.4Γ 10 β23 ) obtained for Q=2.3, 2.5, 2.8 keV respectively for the target 163Ho L. Lusignoli and M. Vignati, Phys. Lett. B 697, 11 (2011), arXiv:1012/0760 (hep-ph) 6.6Γ 10 β24 for tritium A. Cocco, G. Magnamo, and M. Messina, JCAP 0706, 015 (2007), ; J. Phys. Conf. Ser (2008) 08214, arXiv:hep/ph/ Howeverβ¦β¦ KIMS
15
Specific Example β 157TB 157Tb (71 y)β 157Gd (g.s.) & 157Gd (54 keV)
π πΈπΆ =60.1 β62.9 keV (Ξ), π πΎ =50.24 keV, π πΏ1 =8.38 keV , π πΏ2 =7.93 keV , π πΎ = 7.24 keV Assume π πΏ =8 keV Only L-capture to the excited state is allowed The ratios of K- & L- capture = 7.36 KIMS
16
Specific Example β 157TB Branching Ratio
π π πβcapture = (2π) 3 π π π π π π 0 πΎ π½,πΏ Ξ π π 0 ,πΏ Adopt the view that the branching ratio for L-capture toe the 54 keV state < that dictated by the phase-space vector by a factor of 10 Ex) π=50 eV, πΏ=0.02, π π =1 eVβ π =6 eV β π π = π β π π =5 eV (1/10)(5/104)2=2.5β¨―10-8 (104 eV: K-capture energy to the g.s. of 157Gd KIMS
17
Specific Example β 157TB Branching Ratio (π= 10 6 ) KIMS
18
Discussion If exists a resonance around (Ξβπ+π+ π π ) with a width π 1+πΏ , there can be a relatively large rate for π absorption. However, EC capture just below (Ξβπ+ π π ) cannot be suppressed completely for πΏβ 0. If the final state is populated by EC capture, the average energy available for de- excitation is Ξβπβ π ( π =π 4 π 3 5 πΏ 1β πΏ ), smaller than (Ξβπ+π+ π π ) If πΏβ€ 10 β10 & π is large enough, π π π π can be larger than 1. KIMS
19
Conclusion The possibility of observing relic neutrino with neutrino absorption in a nucleus strongly depends on the properties of the target nuclide. Trituim, 187Re in beta-decay sector and 163Ho β considered as possible candidates But the rate is too small If some resonance conditions are met, a considerable enhancement of the associated rates can be obtained. Mass difference = b π=relic neutrino total energy 157Tbβ157Gd meets the conditions, while the nuclide above donβt. KIMS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.