Download presentation
Presentation is loading. Please wait.
1
Chapter Six Trigonometric Functions
Barnett/Ziegler/Byleen College Algebra with Trigonometry, 6th Edition Chapter Six Trigonometric Functions Copyright © 1999 by the McGraw-Hill Companies, Inc.
2
Angles (a) positive (b) negative (c) and coterminal
(a) is a quadrantal (b) is a third-quadrant (c) is a second-quadrant angle angle angle
3
Angles (a) Straight angle (b) Right angle (c) Acute angle
(d) Obtuse angle
4
Radian Measure 6-1-59
5
Trigonometric Functions of Acute Angles
0˚ < q < 90° 6-2-60
6
Trigonometric Functions
with Angle Domains For an arbitrary angle : 6-3-61
7
Signs of the Trigonometric
Functions QUADRANT QUADRANT QUADRANT QUADRANT I II III IV a r b r a b r a b r a b – + + + – + + – – + + b ü sin x = r ý + + – – r csc x = þ b a ü cos x = r ý + – – + r sec x = þ a b ü tan x = a ý + – + – a cot x = þ b 6-3-62
8
Reference Triangle and Reference Angle
1. To form a reference triangle for , draw a perpendicular from a point P(a, b) on the terminal side of to the horizontal axis. 2. The reference angle is the acute angle (always taken positive) between the terminal side of and the horizontal axis. 6-4-63
9
30—60 and 45 Special Triangles
( /6) 45 2 ( /4) 2 1 3 45 ( /4) 1 60 ( /3) 1 6-4-64
10
Circular Functions 1. For x > 0: 2. For x = 0: 3. For x < 0:
In all cases, we define: Where y is the dependent variable and x is the independent variable. 6-5-65
11
Circular Functions and Trigonometric
Trigonometric Function sin x = b 1 = sin ( radians) cos a cos ( tan ( 0) = tan ( csc 0) csc ( sec = sec ( cot = cot ( /2 a b b P (cos x , sin x ) (0, 1) r = 1 x units sin x rad x a 2 cos x (–1, 0) (1, 0) (0, –1) 3 /2 6-5-66
12
Graph of y = sin x Period: 2 Domain: All real numbers Range: [–1, 1]
/2 Graph of y = sin x a b b P (cos x , sin x ) (0, 1) 1 x b Period: 2 Domain: All real numbers Range: [–1, 1] Symmetric with respect to the origin a 2 (–1, 0) a (1, 0) y = sin x = b (0, –1) 3 /2 y 1 x –2 – 2 3 4 -1 6-6-67
13
Graph of y = cos x Period: 2 Domain: All real numbers Range: [–1, 1]
/2 a b b Graph of y = cos x P (cos x , sin x ) (0, 1) 1 x b Period: 2 Domain: All real numbers Range: [–1, 1] Symmetric with respect to the y axis a 2 (–1, 0) a (1, 0) y = cos x = a (0, –1) 3 /2 y 1 x –2 – 2 3 4 -1 6-6-68
14
Graph of y = tan x Period: Domain: All real numbers
except /2 + k , k an integer Range: All real numbers Symmetric with respect to the origin Increasing function between asymptotes Discontinuous at x = /2 + k , k an integer 1 –2 – 2 x 5 3 3 5 – – – 2 2 2 2 2 2 –1 6-6-69
15
Graph of y = cot x Period: Domain: All real numbers except k ,
k an integer Range: All real numbers Symmetric with respect to the origin Decreasing function between asymptotes Discontinuous at x = k , k an integer 1 3 3 – – 2 2 2 2 x –2 – 2 –1 6-6-70
16
Graph of y = csc x y y = csc x sin 1 = y = sin x 1 x –2 – 2 –1
2 –1 Period: 2 Domain: All real numbers except k , k an integer Range: All real numbers y such that y –1 or y 1 Symmetric with respect to the origin Discontinuous at x = k , k an integer 6-6-71
17
Graph of y = sec x y y = sec x cos 1 = y = cos x 1 x –2 – 2 –1
2 –1 Period: 2 Domain: All real numbers except /2 + k, k an integer Symmetric with respect to the y axis Discontinuous at x = /2 + k, k an integer Range: All real numbers y such that y –1 or y 1 6-6-72
18
Step 1. Find the amplitude | A |. Step 2. Solve Bx + C = 0 and
= 2 : Bx + C = 0 and Bx + C = 2 C C 2 x = – x = – + B B B Phase shift Period C 2 Phase shift = – Period = B B The graph completes one full cycle as Bx + C varies from 0 to 2 — that is, as x varies over the interval é C C 2 ù ê – , – + ú B B B ë û é C C 2 ù Step 3. Graph one cycle over the interval ê – , – + ú . B B B ë û Step 4. Extend the graph in step 3 to the left or right as desired. 6-7-73
19
Facts about Inverse Functions
For f a one-to-one function and f–1 its inverse: 1. If (a, b) is an element of f, then (b, a) is an element of f–1, and conversely. 2. Range of f = Domain of f– Domain of f = Range of f–1 3. 4. If x = f–1(y), then y = f(x) for y in the domain of f–1 and x in the domain of f, and conversely. 5. f[f–1(y)] = y for y in the domain of f– f–1[f(x)] = x for x in the domain of f 6-9-74
20
Inverse Sine Function Sine function y y = sin x y = arcsin x æ
– 2 1 x 2 –1 Sine function y –1 y = sin x y = arcsin x æ ö y = sin x 1 , è 2 ø æ 2 ö – 2 1 , 1 è 2 ø (0,0) (0,0) x x –1 1 2 æ ö – , –1 –1 æ ö è 2 ø –1 , – – è 2 ø 2 é ù D OMAIN = ê – , ú D OMAIN = [–1, 1] ë 2 2 û é ù R ANGE = [–1, 1] R ANGE = ê – , ú ë 2 2 û Restricted sine function Inverse sine function 6-9-75
21
Inverse Cosine Function
y 1 x –1 Cosine function y y = cos x = arccos –1 y y = cos x (–1, ) (0,1) 1 è æ ø ö 2 ,0 è æ ø ö , 2 2 x 2 –1 (1,0) ( , –1) x –1 1 D OMAIN = [0, ] D OMAIN = [–1, 1] R ANGE = [–1, 1] R ANGE = [0, ] Restricted cosine function Inverse cosine function 6-9-76
22
Inverse Tangent Function
y y = tan x Tangent function 1 2 3 2 x 3 2 – – 2 –1 y y y = tan –1 x æ ö y = tan x = arctan x 1 , è 4 ø 2 – 2 æ ö 1 , 1 è 4 ø –1 x x 2 æ 1 ö – , –1 –1 è 4 ø 2 æ ö –1 , – – è 4 ø æ ö D OMAIN = (– , ) D OMAIN = ç – , ÷ è 2 2 ø æ ö R ANGE = ç – , ÷ R ANGE = (– , ) è 2 2 ø Restricted tangent function Inverse tangent function 6-9-77
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.