Download presentation
Presentation is loading. Please wait.
1
Fig. 6-00
2
Fig. 6-01
3
Heat energy exits ecosystem
Fig. 6-02 Sunlight energy enters ecosystem Photosynthesis C6H12O6 Glucose O2 Oxygen CO2 Carbon dioxide H2O Water Cellular respiration ATP drives cellular work Heat energy exits ecosystem
4
O2 CO2 Breathing O2 CO2 Muscle cells Cellular respiration
Fig. 6-03 O2 CO2 Breathing Lungs O2 CO2 Muscle cells Cellular respiration
5
O2 CO2 Breathing O2 CO2 Muscle cells Cellular respiration
Fig. 6-03a O2 CO2 Breathing Lungs O2 CO2 Muscle cells Cellular respiration
6
Fig. 6-03b
7
1 H2 O2 2 Release of heat energy H2O
Fig. 6-04 1 H2 O2 2 Release of heat energy H2O
8
Electron transport chain
Fig. 6-05 e e Electrons from food e e Stepwise release of energy used to make NAD NADH ATP 2 H 2 e Electron transport chain 2 e 2 1 2 H O2 Hydrogen, electrons, and oxygen combine to produce water H2O
9
Mitochondrion Cytoplasm Cytoplasm Animal cell Plant cell Cytoplasm
Fig. 6-06 Mitochondrion Cytoplasm Cytoplasm Animal cell Plant cell Cytoplasm Mitochondrion High-energy electrons carried by NADH High-energy electrons carried mainly by NADH Glycolysis Citric Acid Cycle 2 Pyruvic acid Electron Transport Glucose ATP ATP ATP
10
Cytoplasm Mitochondrion Glycolysis 2 Pyruvic acid ATP ATP ATP
Fig. 6-06a Cytoplasm Mitochondrion High-energy electrons carried by NADH High-energy electrons carried mainly by NADH Glycolysis Citric Acid Cycle 2 Pyruvic acid Electron Transport Glucose ATP ATP ATP
11
Energy investment phase
Fig INPUT OUTPUT 2 ATP 2 ADP Glucose Key Carbon atom Phosphate group High-energy electron Energy investment phase
12
Energy investment phase
Fig INPUT OUTPUT NADH NAD 2 ATP 2 ADP Glucose Key NAD Carbon atom NADH Phosphate group High-energy electron Energy investment phase Energy harvest phase
13
Energy investment phase
Fig INPUT OUTPUT NADH 2 ATP NAD 2 ADP 2 ATP 2 ADP 2 Pyruvic acid Glucose 2 ADP 2 ATP Key NAD Carbon atom NADH Phosphate group High-energy electron Energy investment phase Energy harvest phase
14
Fig. 6-08 Enzyme P ADP ATP P P
15
INPUT OUTPUT Oxidation of the fuel generates NADH (from glycolysis)
Fig. 6-09 INPUT OUTPUT Oxidation of the fuel generates NADH (from glycolysis) (to citric acid cycle) NAD NADH CoA Pyruvic acid loses a carbon as CO2 Acetic acid Acetic acid attaches to coenzyme A Acetyl CoA Pyruvic acid CO2 Coenzyme A
16
INPUT OUTPUT ATP Citric Acid Cycle Citric acid Acetic acid 2 CO2
Fig. 6-10 INPUT OUTPUT Citric acid Acetic acid 2 CO2 ADP P ATP Citric Acid Cycle 3 NAD 3 NADH FAD FADH2 Acceptor molecule
17
Electron transport chain
Fig. 6-11 Space between membranes H H H H H H H H Electron carrier H H H H H Protein complex Inner mitochondrial membrane FADH2 FAD Electron flow H 1 O2 2 H H2O 2 NADH NAD ADP P ATP H H H H H Matrix Electron transport chain ATP synthase
18
Electron transport chain
Fig. 6-11a Space between membranes H H H H H H H H Electron carrier H H H H H Protein complex Inner mitochondrial membrane FADH2 FAD Electron flow H 1 O2 2 H H2O 2 NADH NAD ADP P ATP H H H H H ATP synthase Matrix Electron transport chain
19
Food Polysaccharides Fats Proteins Sugars Glycerol Fatty acids
Fig. 6-12 Food Polysaccharides Fats Proteins Sugars Glycerol Fatty acids Amino acids Citric Acid Cycle Acetyl CoA Glycolysis Electron Transport ATP
20
Cytoplasm Mitochondrion 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2
Fig. 6-13 Cytoplasm Mitochondrion 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2 Acetyl CoA 2 Pyruvic acid Citric Acid Cycle Electron Transport Glucose Maximum per glucose: 2 ATP 2 ATP About 34 ATP About 38 ATP by direct synthesis by direct synthesis by ATP synthase
21
Fig. 6-14 INPUT OUTPUT 2 ADP 2 ATP 2 P Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid 2 H Glucose 2 Lactic acid
22
INPUT OUTPUT Glycolysis Glucose
Fig. 6-14a INPUT OUTPUT 2 ADP 2 ATP 2 P Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid 2 H 2 Lactic acid Glucose
23
Fig. 6-14b
24
diffusion of lactic acid; diffusion of lactic acid
Fig. 6-15 Battery Battery Force measured Force measured Frog muscle stimulated by electric current Solution allows diffusion of lactic acid; muscle can work for twice as long Solution prevents diffusion of lactic acid
25
Fig. 6-16 INPUT OUTPUT 2 ADP 2 ATP 2 P 2 CO2 released Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid 2 H Glucose 2 Ethyl alcohol Bread with air bubbles produced by fermenting yeast Beer fermentation
26
INPUT OUTPUT 2 ADP 2 ATP 2 P 2 CO2 released Glycolysis 2 NAD 2 NAD
Fig. 6-16a INPUT OUTPUT 2 ADP 2 ATP 2 P 2 CO2 released Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid 2 H Glucose 2 Ethyl alcohol
27
Fig. 6-16b
28
First eukaryotic organisms 2.2
Fig. 6-17 Earth’s atmosphere O2 present in 2.1 First eukaryotic organisms 2.2 Atmospheric oxygen reaches 10% of modern levels 2.7 Atmospheric oxygen first appears Billions of years ago 3.5 Oldest prokaryotic fossils 4.5 Origin of Earth
29
First eukaryotic organisms 2.2
Fig. 6-17a Earth’s atmosphere O2 present in 2.1 First eukaryotic organisms 2.2 Atmospheric oxygen reaches 10% of modern levels 2.7 Atmospheric oxygen first appears Billions of years ago 3.5 Oldest prokaryotic fossils 4.5 Origin of Earth
30
Fig. 6-17b
31
C6H12O6 6 O2 6 CO2 6 H2O ATP Glucose Oxygen Carbon dioxide Water
Fig. 6-UN01 C6H12O6 6 O2 6 CO2 6 H2O ATP Glucose Oxygen Carbon dioxide Water Energy
32
Glucose loses electrons Oxygen gains electrons (and hydrogens)
Fig. 6-UN02 Oxidation Glucose loses electrons (and hydrogens) C6H12O6 6 O2 6 CO2 6 H2O Glucose Oxygen Carbon dioxide Water Reduction Oxygen gains electrons (and hydrogens)
33
Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP
Fig. 6-UN03 Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP
34
Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP
Fig. 6-UN04 Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP
35
Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP
Fig. 6-UN05 Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP
36
C6H12O6 Sunlight O2 Cellular respiration CO2 H2O
Fig. 6-UN06 Heat C6H12O6 Sunlight O2 ATP Cellular respiration Photosynthesis CO2 H2O
37
C6H12O6 6 O2 6 CO2 6 H2O Approx. 38 ATP
Fig. 6-UN07 C6H12O6 6 O2 6 CO2 6 H2O Approx. 38 ATP
38
Glucose loses electrons (and hydrogens)
Fig. 6-UN08 Oxidation Glucose loses electrons (and hydrogens) C6H12O6 CO2 Electrons (and hydrogens) ATP O2 H2O Reduction Oxygen gains electrons (and hydrogens)
39
Mitochondrion O2 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2 Acetyl CoA
Fig. 6-UN09 Mitochondrion O2 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2 Acetyl CoA Citric Acid Cycle 2 Pyruvic acid Electron Transport Glucose 2 CO2 4 CO2 H2O About 34 ATP 2 ATP by direct synthesis by direct synthesis 2 ATP by ATP synthase About 38 ATP
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.