Presentation is loading. Please wait.

Presentation is loading. Please wait.

Identifying and Graphing Log Functions

Similar presentations


Presentation on theme: "Identifying and Graphing Log Functions"β€” Presentation transcript:

1 Identifying and Graphing Log Functions
Section 3.2 Precalculus PreAP/Dual, Revised Β©2017 11/24/2018 8:03 PM 3.2: Log Functions

2 Real-Life Situation The pH scale is used in chemistry to determine the acidity or alkalinity of a solution. The scale ranges from 𝟏 to πŸπŸ’, with 𝟏 being the most acidic and πŸπŸ’ the most alkaline The difference in strength of an acid of 𝒑𝑯 𝟏 and that of 𝒑𝑯 𝟐 is not twofold, but tenfold The pH scale is actually a logarithm in the form: π’π’π’ˆπŸπŸŽ, thus, 𝒑𝑯 𝟏 = π’π’π’ˆπŸπŸŽπŸπŸŽ, and 𝒑𝑯 𝟐 = π’π’π’ˆπŸπŸŽπŸπŸŽπŸŽ 11/24/2018 8:03 PM 3.2: Log Functions

3 Real Life Situation The Richter scale is used to determine the strength of the ground movement. The larger the number, the more violent the movement Similar to the pH scale, an earthquake of magnitude 7 on the scale is ten times stronger than an earthquake of magnitude 6. Again, this is because the Richter scale is actually a logarithm: log10[measurement of movement of the earth] 11/24/2018 8:03 PM 3.2: Log Functions

4 Real-Life Situation The Modified Richter Scale uses a modified scale.
It is not ten-fold A separate equation is used Music β€œSemitones” The interval between two notes in semitones is the base-21/12Β logarithm of the frequency ratio (or equivalently, 12 times the base-2 logarithm). Astronomy The magnitude measures the stars’ brightness logarithmically with vision Source: Wikipedia 11/24/2018 8:03 PM 3.2: Log Functions

5 Defining Logarithms Logarithms are defined as the INVERSE of an exponential function. It can be used specifically to find base powers. They are 10-fold. Exponential form: 𝒃 𝒙 = 𝒂; where 𝒃 is the BASE, 𝒙 is the POWER, and 𝒂 is the VALUE. Logarithmic form: π₯𝐨𝐠 𝒃 𝒂=𝒙; 𝒃 is the BASE, 𝒂 is the ARGUMENT, and 𝒙 is the POWER. It is read as β€œlog of 𝒂 base 𝒃” or β€œlog base 𝒃 of 𝒂” If the base is not given (such as log 3) it is understood to be COMMON BASE OF 10. 11/24/2018 8:03 PM 3.2: Log Functions

6 Definition Logarithms are defined as the INVERSE of an exponential function. It can be used specifically to find base powers. They are 10-fold. If there is not a base given, the base is ALWAYS 10. 11/24/2018 8:03 PM 3.2: Log Functions

7 Review What is the inverse function of π’š=πŸπ’™? 11/24/2018 8:03 PM
3.2: Log Functions

8 To Identify Logarithms
𝒃 = Base 𝒙 = Power/Argument 𝒂 = Value 11/24/2018 8:03 PM 3.2: Log Functions

9 The Snail 11/24/2018 8:03 PM 3.2: Log Functions

10 = Example 1 Given 𝟐 πŸ’ =πŸπŸ”, write this problem in logarithmic form
11/24/2018 8:03 PM 3.2: Log Functions

11 Example 2 Given π₯𝐨𝐠 πŸ’ 𝟏 πŸπŸ” =βˆ’πŸ, write this problem in exponential form = 11/24/2018 8:03 PM 3.2: Log Functions

12 Your Turn Given 𝟏𝟎 βˆ’πŸ = 𝟏 𝟏𝟎𝟎 , write this problem in logarithmic form
11/24/2018 8:03 PM 3.2: Log Functions

13 Example 3 Given π₯𝐨𝐠 πŸπŸ• πŸ—=𝒙, write this problem in exponential form and solve for 𝒙 (without a calculator) 11/24/2018 8:03 PM 3.2: Log Functions

14 Example 3 Given π₯𝐨𝐠 πŸπŸ• πŸ—=𝒙, write this problem in exponential form and solve for 𝒙 (without a calculator) 11/24/2018 8:03 PM 3.2: Log Functions

15 Your Turn Given π₯𝐨𝐠 πŸ– πŸ– , write this problem in exponential form and solve (without a calculator) 11/24/2018 8:03 PM 3.2: Log Functions

16 Example 4 Given π₯𝐨𝐠⁑𝟏𝟎𝟎=𝒙, write this problem in exponential form and solve for 𝒙 11/24/2018 8:03 PM 3.2: Log Functions

17 Your Turn Given π₯𝐨𝐠 𝟏 𝟏𝟎𝟎𝟎 = 𝒙, write this problem in exponential form and solve for 𝒙 If there isn’t a base given, assume the base to be… 11/24/2018 8:03 PM 3.2: Log Functions

18 Graphing Logs Exponential functions are its inverse
π₯𝐨𝐠 𝒃 𝒙 is the parent function where it always passes 𝟏, 𝟎 and 𝒃, 𝟏 Domain: 𝟎, ∞ , Range: βˆ’βˆž, ∞ Equation: π’š=𝒂 π₯𝐨𝐠 𝒃 𝑩 π’™βˆ’π‘ͺ +𝑫 𝑨 is the reflection over 𝒙-axis 𝒃 is the base 𝑩 is the reflection over the π’š-axis π‘ͺ = translation of the right or left 𝑫 = translation up or down 11/24/2018 8:03 PM 3.2: Log Functions

19 Example 5 Graph π’š= 𝟐 𝒙 and identify domain, range, and asymptote βˆ’πŸ‘ βˆ’πŸ
𝟐 βˆ’πŸ‘ = 𝟏 𝟐 πŸ‘ = 𝟏 πŸ– βˆ’πŸ 𝟐 βˆ’πŸ = 𝟏 𝟐 𝟐 = 𝟏 πŸ’ βˆ’πŸ 𝟐 βˆ’πŸ = 𝟏 𝟐 𝟎 𝟐 𝟎 = 𝟏 𝟏 =𝟏 𝟏 𝟐 𝟏 =𝟐 𝟐 𝟐 𝟐 =πŸ’ πŸ‘ 𝟐 πŸ‘ =πŸ– 𝒙 π’š βˆ’πŸ‘ βˆ’πŸ βˆ’πŸ 𝟎 𝟏 𝟐 πŸ‘ 11/24/2018 8:03 PM 3.2: Log Functions

20 Example 6 Graph π’š= π₯𝐨𝐠 𝟐 𝒙 and identify domain, range, and asymptote
11/24/2018 8:03 PM 3.2: Log Functions

21 Example 6 Graph π’š= π₯𝐨𝐠 𝟐 𝒙 and identify domain, range, and asymptote 𝒙
π’š= π₯𝐨𝐠 𝟐 𝒙 π’š 𝟏 πŸ– 𝟐 βˆ’πŸ‘ =𝒙 βˆ’πŸ‘ 𝟏 πŸ’ 𝟐 βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 𝟐 𝟐 βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 𝟐 𝟎 =𝒙 𝟎 𝟐 𝟐 𝟏 =𝒙 πŸ’ 𝟐 𝟐 =𝒙 πŸ– 𝟐 πŸ‘ =𝒙 πŸ‘ 𝒙 π’š= π₯𝐨𝐠 𝟐 𝒙 π’š π₯𝐨𝐠 𝟐 𝒙 =βˆ’πŸ‘ βˆ’πŸ‘ π₯𝐨𝐠 𝟐 𝒙 =βˆ’πŸ βˆ’πŸ π₯𝐨𝐠 𝟐 𝒙 =βˆ’πŸ βˆ’πŸ π₯𝐨𝐠 𝟐 𝒙 =𝟎 𝟎 π₯𝐨𝐠 𝟐 𝒙 =𝟏 𝟏 π₯𝐨𝐠 𝟐 𝒙 =𝟐 𝟐 π₯𝐨𝐠 𝟐 𝒙 =πŸ‘ πŸ‘ 𝒙 π’š= π₯𝐨𝐠 𝟐 𝒙 π’š βˆ’πŸ‘ βˆ’πŸ βˆ’πŸ 𝟎 𝟏 𝟐 πŸ‘ 𝒙 π’š= π₯𝐨𝐠 𝟐 𝒙 π’š 𝟐 βˆ’πŸ‘ =𝒙 βˆ’πŸ‘ 𝟐 βˆ’πŸ =𝒙 βˆ’πŸ 𝟐 βˆ’πŸ =𝒙 βˆ’πŸ 𝟐 𝟎 =𝒙 𝟎 𝟐 𝟏 =𝒙 𝟏 𝟐 𝟐 =𝒙 𝟐 𝟐 πŸ‘ =𝒙 πŸ‘ 11/24/2018 8:03 PM 3.2: Log Functions

22 Your Turn Graph π’š= π₯𝐨𝐠 πŸ‘ 𝒙 and identify domain, range, and asymptote 𝒙
π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š 𝟏 πŸπŸ• πŸ‘ βˆ’πŸ‘ =𝒙 βˆ’πŸ‘ 𝟏 πŸ— πŸ‘ βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 πŸ‘ πŸ‘ βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 πŸ‘ 𝟎 =𝒙 𝟎 πŸ‘ πŸ‘ 𝟏 =𝒙 πŸ— πŸ‘ 𝟐 =𝒙 𝟐 πŸπŸ• πŸ‘ πŸ‘ =𝒙 11/24/2018 8:03 PM 3.2: Log Functions

23 Example 7 Graph π’š= π₯𝐨𝐠 πŸ‘ π’™βˆ’πŸ and identify domain, range, and asymptote
π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š 𝟏 πŸπŸ• πŸ‘ βˆ’πŸ‘ =𝒙 βˆ’πŸ‘ 𝟏 πŸ— πŸ‘ βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 πŸ‘ πŸ‘ βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 πŸ‘ 𝟎 =𝒙 𝟎 πŸ‘ πŸ‘ 𝟏 =𝒙 πŸ— πŸ‘ 𝟐 =𝒙 𝟐 πŸπŸ• πŸ‘ πŸ‘ =𝒙 11/24/2018 8:03 PM 3.2: Log Functions

24 Example 7 Graph π’š= π₯𝐨𝐠 πŸ‘ π’™βˆ’πŸ and identify domain, range, and asymptote
11/24/2018 8:03 PM 3.2: Log Functions

25 Example 7 Graph π’š= π₯𝐨𝐠 πŸ‘ π’™βˆ’πŸ and identify domain, range, and asymptote
π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š 𝟏 πŸπŸ• πŸ‘ βˆ’πŸ‘ =𝒙 βˆ’πŸ‘ 𝟏 πŸ— πŸ‘ βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 πŸ‘ πŸ‘ βˆ’πŸ =𝒙 βˆ’πŸ 𝟏 πŸ‘ 𝟎 =𝒙 𝟎 πŸ‘ πŸ‘ 𝟏 =𝒙 πŸ— πŸ‘ 𝟐 =𝒙 𝟐 πŸπŸ• πŸ‘ πŸ‘ =𝒙 𝒙 π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š πŸπŸ– πŸπŸ• πŸ‘ βˆ’πŸ‘ =π’™βˆ’πŸ βˆ’πŸ‘ 𝟏𝟎 πŸ— πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ πŸ’ πŸ‘ πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ 𝟐 πŸ‘ 𝟎 =π’™βˆ’πŸ 𝟎 πŸ’ πŸ‘ 𝟏 =π’™βˆ’πŸ 𝟏 𝟏𝟎 πŸ‘ 𝟐 =π’™βˆ’πŸ πŸπŸ– πŸ‘ πŸ‘ =π’™βˆ’πŸ πŸ‘ 𝒙 π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š 𝟏 πŸπŸ• +𝟏 πŸ‘ βˆ’πŸ‘ =π’™βˆ’πŸ βˆ’πŸ‘ 𝟏 πŸ— +𝟏 πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ 𝟏 πŸ‘ +𝟏 πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ 𝟏+𝟏 πŸ‘ 𝟎 =π’™βˆ’πŸ 𝟎 πŸ‘+𝟏 πŸ‘ 𝟏 =π’™βˆ’πŸ 𝟏 πŸ—+𝟏 πŸ‘ 𝟐 =π’™βˆ’πŸ 𝟐 πŸπŸ•+𝟏 πŸ‘ πŸ‘ =π’™βˆ’πŸ πŸ‘ 11/24/2018 8:03 PM 3.2: Log Functions

26 Example 8 Graph π’š= π₯𝐨𝐠 πŸ‘ 𝟐 π’™βˆ’πŸ +πŸ‘ and identify domain, range, and asymptote 𝒙 π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š πŸπŸ– πŸπŸ• βˆ™πŸ πŸ‘ βˆ’πŸ‘ =π’™βˆ’πŸ βˆ’πŸ‘+πŸ‘ 𝟏𝟎 πŸ— βˆ™πŸ πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ+πŸ‘ πŸ’ πŸ‘ βˆ™πŸ πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ+πŸ‘ πŸβˆ™πŸ πŸ‘ 𝟎 =π’™βˆ’πŸ 𝟎+πŸ‘ πŸ’βˆ™πŸ πŸ‘ 𝟏 =π’™βˆ’πŸ 𝟏+πŸ‘ πŸπŸŽβˆ™πŸ πŸ‘ 𝟐 =π’™βˆ’πŸ 𝟐+πŸ‘ πŸπŸ–βˆ™πŸ πŸ‘ πŸ‘ =π’™βˆ’πŸ πŸ‘+πŸ‘ 𝒙 π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š πŸ“πŸ” πŸπŸ• πŸ‘ βˆ’πŸ‘ =π’™βˆ’πŸ 𝟎 𝟐𝟎 πŸ— πŸ‘ βˆ’πŸ =π’™βˆ’πŸ 𝟏 πŸ– πŸ‘ πŸ‘ βˆ’πŸ =π’™βˆ’πŸ 𝟐 πŸ’ πŸ‘ 𝟎 =π’™βˆ’πŸ πŸ‘ πŸ– πŸ‘ 𝟏 =π’™βˆ’πŸ 𝟐𝟎 πŸ‘ 𝟐 =π’™βˆ’πŸ πŸ“ πŸ“πŸ” πŸ‘ πŸ‘ =π’™βˆ’πŸ πŸ” 𝒙 π’š= π₯𝐨𝐠 πŸ‘ 𝒙 π’š πŸπŸ– πŸπŸ• βˆ™πŸ πŸ‘ βˆ’πŸ‘ =π’™βˆ’πŸ βˆ’πŸ‘ 𝟏𝟎 πŸ— βˆ™πŸ πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ πŸ’ πŸ‘ βˆ™πŸ πŸ‘ βˆ’πŸ =π’™βˆ’πŸ βˆ’πŸ πŸβˆ™πŸ πŸ‘ 𝟎 =π’™βˆ’πŸ 𝟎 πŸ’βˆ™πŸ πŸ‘ 𝟏 =π’™βˆ’πŸ 𝟏 πŸπŸŽβˆ™πŸ πŸ‘ 𝟐 =π’™βˆ’πŸ 𝟐 πŸπŸ–βˆ™πŸ πŸ‘ πŸ‘ =π’™βˆ’πŸ πŸ‘ 11/24/2018 8:03 PM 3.2: Log Functions

27 Example 9 Graph π’š=βˆ’πŸ π₯𝐨𝐠 𝟐 𝒙+𝟐 βˆ’πŸ‘ and identify domain, range, and asymptote 11/24/2018 8:03 PM 3.2: Log Functions

28 Your Turn Graph π’š= π₯𝐨𝐠 𝟐 βˆ’ π’™βˆ’πŸ’ βˆ’πŸ‘ and identify domain, range, and asymptote 11/24/2018 8:03 PM 3.2: Log Functions

29 Assignment Worksheet 11/24/2018 8:03 PM 3.2: Log Functions


Download ppt "Identifying and Graphing Log Functions"

Similar presentations


Ads by Google