Download presentation
Presentation is loading. Please wait.
1
Console Editeur : myProg.R 1
> summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call: lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16 > 1 2 3 4 5 6 dn <- read.csv2("EPO2007-Fraude-BasePropre V03.csv") summary(lm(dn$Taille~dn$Sexe+dn$Age))
2
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
3
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
4
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
5
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
6
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
7
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
8
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
9
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
10
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
11
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
12
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
13
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
14
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
15
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
16
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
17
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
18
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
19
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
20
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
21
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
22
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
23
Résultat Tableau > summary(lm(dn$Taille~dn$Sexe+dn$Age)) Call:
lm(formula = dn$Taille ~ dn$Sexe + dn$Age) Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** dn$SexeHomme <2e-16 *** dn$Age --- Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: on 273 degrees of freedom (10 observations deleted due to missingness) Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 273 DF, p-value: < 2.2e-16
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.