Presentation is loading. Please wait.

Presentation is loading. Please wait.

Linear Accelerator Laboratory – Orsay – France

Similar presentations


Presentation on theme: "Linear Accelerator Laboratory – Orsay – France"— Presentation transcript:

1 Linear Accelerator Laboratory – Orsay – France
SPLFréjus J-E Campagne Linear Accelerator Laboratory – Orsay – France Thanks: A. Cazes, M. Mezzetto, Th. Schwetz and the GLoBES team and AM Lombardi, R. Garoby

2 A possible schema CERN SPL LSM-Fréjus 130km Near detector
TRE CERN SPL LSM-Fréjus Near detector 130km Related talks Machines R. Garoby & M. Lindroos + BetaBeam: see M. Mezzetto + ATM n: see Th. Schwetz

3 SPL block diagram (CDR 1)
Characteristics (Conceptual Design Report 1): are “optimized” for a neutrino factory assume the use of LEP cavities & klystrons up to the highest energy 2.2GeV

4 Gradients at 700 MHz Last test performed in CryHoLab (July 04):
from Stephane Chel, HIPPI04, Frankfurt, sep04 Last test performed in CryHoLab (July 04): 5-cells 700 MHz ß=0.65 Nb cavity A5-01 from CEA/Saclay and IPN-Orsay LEP cavities may have worked 350MHz & 3.6MV/m effective gradient NuFact Note 040

5 New optimization questioned @ MMW04*
Particle production Horn design optimisation Decay tunnel parameter optimisation Flux computation at Fréjus q13 and dCP sensitivity. p p n LAL – submitted to EPJC *: Multi MegaWatt Workshop at CERN May 04

6 Particle production Proton beam : Target :
Pencil like Ek=2.2GeV, 3.5GeV… Target : 30cm long cylinder, 15mm in Liq. Hg FLUKA Normalized to a power of 4MW: GeV GeV

7 SuperBeam vs nFact Optics
px/pz x 20 mrad 2 m Super Beam Spot 130km Decay tunnel size px/pz x ½ rad 30cm nFact Decay channel solenoids Aperture and B strength Thanks S. Gilardoni

8 at the exit of the target
p (2.2GeV) p+ Hg Pion production nFact SB at the exit of the target Horn optimisation by S. Gilardoni This new optimisation 2 105 pot Rule of thumb: Ep/3~ En (GeV)  2.L(km)

9 Kaon production? at 2.2GeV : at 3.5GeV : at 4.5GeV : 0.26 p+/s
see BENE meeting 11/09/03 Ep(GeV) p+ p- K+ K- K0 Not physical dip !!! Not Used… 3.5 2.2 For pot at 2.2GeV : 0.26 p+/s K+/s at 3.5GeV : 0.29 p+/s K+/s at 4.5GeV : 0.32 p+/s K+/s

10 Conductor thickness : 3mm
Horn design parameter 140 cm 220 cm 80 cm Conductor thickness : 3mm horn : 300kAmps reflector : 600kAmps Challenging!!! Drawing from the horn built at CERN Optimized for Super Beam HORN inner radius 3.4cm neck length 40cm outer radius 20.5cm total length 140cm REFLECTOR 220cm En~300MeV Ep~800MeV + or - focusing Using Geant 3.2.1 NuFact-Note 138

11 Decay Tunnel Parameters
Length modify purity L=10m, 20m, 40m and 60m have been tested. 10m40m nm , nm + 50% to 70% ne , ne + 50% to 100% 40m60m nm , nm + 5% ne , ne + 20% 40m seems better Radius modify acceptance R=1m, 1.5m and 2m have been Tested 1m 2m (L=40) nm , nm +50% ne , ne +50% to 70% Larger is better (2m)… This results have been checked on sensitivity to q13 and dCP

12 Fluxes comparison @ 130km ~95 nmCC/kT/yr*
<En> ~ 300 MeV, /100m2/yr 3.5GeV SPL optimum <En> ~ 245 MeV, /100m2/yr 2.2GeV SPL optimum <En> ~ 275 MeV, /100m2/yr Old nFact optimum *: Lipari x-sect. (see later)

13 nm ne ne nm Flux @ 130km: + focusing p+ m+ x1/140
x1/140 x1/17 x1/3000 nm ne p+ m+ 3.5GeV Kinetic p beam ~800MeVp focusing 40m decay tunnel length 2m decay tunnel radius ne nm ~1/2 m- ~1/2 K0e3 p-

14 The X-sections nm SPL ---: Lipari et al. on H20 bB is an ideal tool to measure these cross-sections and a 2% systematic error on both signal and background are used.

15 Analysis: GLoBES + M. Mezzetto’s parameterization file
440kT x 5yrs: 2,2 Mt.yrs (+) nmne (Sig) q13 = 1° q13 = 3° sin22q13= 0.05 33 (d = p/2) 330 2200 3670 (d = 0°) nmne (Bkg) 1500 ne ne CC p0 from NC nm nm CC (m missId) ne ne CC Frac. of Bkg 90% 6% 3% 1% Reduction Factor 0.707(1060) (90) (45) 0.677(15) nmnm (Sig) 64950 64414 nmnm (Bkg) 3 ( nmnm CC) sin22q12=0.82, q23=p/4, Dm221= eV2, Dm231= eV2 Reduction factor and efficiencies taken from SK simulation (D. Casper) and a tight cut for e/m misId. (cf. hep-ph/ )

16 440kT x 8yrs: 3,5 Mt.yrs (-) nmne (Sig) q13 = 1° q13 = 3°
sin22q13= 0.001 q13 = 3° sin22q13= 0.01 sin22q13= 0.05 110 (d = p/2) 390 1300 1140 (d = 0°) nmne (Bkg) 490 ne ne CC ne  ne CC p0 from NC nm nm CC (m missId) Frac. of Bkg 45% 35% 18% 2% Reduction Factor 0.677(220) 0.707(170) (90) (10) nmnm (Sig) 19760 19590 nmnm (Bkg) 1 ( nmnm CC) sin22q12=0.82, q23=p/4, Dm221= eV2, Dm231= eV2

17 Some physics performances
440kT water Č, 4MW SPL, opti. Fluxes dCP=0 preliminary 90%CL New Opt. Old Opt. 5yrs (+) True values: (Dm23, sin22q13) sin22q12=0.82, q23=p/4, Dm221= eV2 5% external precision on q12 and Dm221 and use SPL disappearance channel and spectrum analysis* 2% syst. on signal & bkg Sin22q13(90%CL) = (0.7°) sizeable improvement *: 5 bins [0.08,1.08] GeV (2(2dof)=4.6 or 11.83)

18 Some physics performances
True values: dCP=0, q13=0, sin22q12=0.82, q23=p/4, Dm221= , Dm231= 5% external precision on q12 and Dm221 and use SPL disappearance channel 2yrs (+) 8yrs (-) preliminary T2K-I Rate only Spectrum analysis (prelim.) 90%CL (2(2dof)=4.6) 5yrs (+) Old SPL x10 2yrs (+) 8yrs (-) preliminary Improve T2K-I 2% syst. on signal & bkg

19 Some physics performances
CP 3s 2yrs (+) 8yrs (-) preliminary Old Opti. New Opti. True values (dCP,q) Tests dCP=0 and dCP=p sin22q12=0.82, q23=p/4, Dm221= , Dm231= 5% external precision on q12 and Dm221 use SPL disappearance channel 2% syst on signal & bkg Use glbChiDelta and 2 (1dof)=9

20 Evolution of the performances
2yrs (+), 8 yrs (-) 0.02 0.04 0.06 sin22q13 -1 -0.5 0.5 d/p “nFact opt.” “ 3.5 GeV opt.” true Wrong q23 Wrong hierarchy Wrong hierarchy and q23 90%CL Solid: SPL+ATM Dashed: SPL only NNN05 New Prelim. True values: dCP/p =-0.85, sin22q13=0.03, sin2q23=0.4, 5% external precison on Dm221= , Dm231= , q23 cf. Th. Schwetz

21 CDR2 block diagrams CERN proton complex 1-2GeV Eurisol, bB 2-3.5GeV
SuperB, NuFact

22 Global planning (R.G courtesy)
RF tests in SM 18 of prototype structures* for Linac4 3 MeV test place ready Linac4 approval SPL approval CDR 2

23 Summary Thank you Higher proton energy & SB Horn specific
new baseline: 3.5GeV/2m/40m q13 sensitivity: sensitivity to q13 = 0.7° (5yrs +): gain +25% wrt old result down to q13 = 1.4° with the 10yrs mixed scenario independently of dCP Improve T2K-I by a factor 10 at dCP = 0 (5yrs +) Can discover CP violation Can solve ambiguities alone and result is improved thanks to ATMn (Th. Schwetz ‘s talk) Complementary to BetaBeam to cross check the background and improve dCP sensitivity (M. Mezzetto’s talk) Thank you

24 END

25 q13 and dCP Sensitivity computation
Use GLoBES v and M. Mezzetto SPL.glb file detector: Water Cerenkov 440 kt at Fréjus (130 km from CERN) Run: 5 years p+ 1 year p+ + 4 years p- 2 years p+ + 8 years p- Computed with dCP=0 (standard benchmark) and q13 = 0 other parameters… Dm23 = eV2 Dm12 = eV2 Same duration Same statistics sin22q23 = 1.0 sin22q12 = 0.82

26 nm ne nm ne Flux @ 130km: - focusing 1/3 m+ 1/3 K0e3 1/3 K+e3 p+
3.5GeV Kinetic p beam ~800MeVp focusing 40m decay tunnel length 2m decay tunnel radius x1/1300 x1/10 x1/200 p- m- nm ne

27 5 years positive focusing
Energy comparison Focusing comparison dCP = 0 10-3 sin22q13 Dm223 (eV2) En~260MeV dCP = 0 10-3 sin22q13 Dm223 (eV2) Best sin22q13 > Ek = 4.5GeV En=300MeV tunnel : 40m long 2m radius

28 positive focusing vs 10 years mixed scenario.
Energy comparison Focusing comparison 300MeV 4.5GeV 3.5GeV 260MeV 2y+ 8y- 5y+ 50 2.2GeV 3.5GeV 4.5GeV 8GeV -50 -50 5y+ 2y+ 8y- -100 -100 -150 -150 10-4 10-3 10-4 10-3 10-4 10-3 10-4 10-3 Best sin22q13 > Ek = 3.5GeV En=300MeV tunnel : 40m long 2m radius 90%CL

29 General comparison. 5y mixed focusing 10y mixed focusing 5y positive focusing for 10 years in mixed focusing, sensitivity around q13~1° Clear complementarily between positive scenario and bbeam (dCP>0)

30 Neutrino Flux 100km away p+ focusing evts/100m2/y Ek=3.5GeV En ~300MeV
L = 40m,R=2m Neutrino Flux 100km away p+ focusing from p and m from K0 from K Ekine (GeV) evts/100m2/y

31 Discrepancies reduced in the beam line
MARS vs FLUKA At the entrance of the SB decay tunnel (after the horn focusing) R = 1m No angular cut Discrepancies reduced in the beam line A. Cazes thesis


Download ppt "Linear Accelerator Laboratory – Orsay – France"

Similar presentations


Ads by Google