Download presentation
Presentation is loading. Please wait.
1
ZERO-MAGNETISATION SPIN-SOURCES
Chiara Ciccarelli University of Cambridge ZERO-MAGNETISATION SPIN-SOURCES SPICE workshop on anti-ferromagnetic spintronics 26-30 September 2016
2
ZERO MAGNETISATION SPIN-SOURCES
1 2 Spin-Hall effect in anti-ferromagnets Element-selective spin-emission 3 Spin-pumping from an anti-ferromagnet
3
The Spin-Hall effect in anti-ferromagnets
EXPERIMENT 1 The Spin-Hall effect in anti-ferromagnets
4
We determine the current-induced fields by FMR
𝐦 θ B NiFe (4 nm) IrMn (4 nm) x y z Seed layer
5
We determine the current-induced fields by FMR
Vdc 𝐦 θ B V t =R ωt ×I ωt = = V dc +V(2ωt) NiFe (4 nm) IrMn (4 nm) x y z Seed layer Tulapurkar, Nature 2005 Fang, Nature Nano 2011
6
We determine the current-induced fields by FMR
Vdc 𝐦 θ B hy 𝐡 𝐳 ~𝛔×𝐦 NiFe (4 nm) hz IrMn (4 nm) x y z Seed layer @ 107 A/cm2 hz 1.13∓0.05 mT hy 1.04∓0.03 mT hOe 1.09∓0.07 mT Tshitoyan, PRB 2015
7
SHE-STT or ELSE? NiFe (4 nm) Cu (2 nm) IrMn (4 nm) seed qSH = 5.6 %
qSH(Ir20Mn80)∼0.8qSH(Pt) Mendes, 2014 q(Ir50Mn50) ∼2% Zhang, 2014 Tshitoyan, PRB 2015
8
SHE-STT or ELSE? NiFe (4 nm) Cu (2 nm) IrMn (4 nm) qSH = 22 % seed
Tshitoyan, PRB 2015
9
The SH angle is correlated to the exchange field
qSH = 22 % Tshitoyan, PRB 2015
10
Coupled dynamics might be at the origin of the increase in hz
μ 0 𝛻H ω = μ 0 𝛻H inh + α eff ω γ Tshitoyan, PRB 2015
11
We get a negative value of Gmix
Coupled dynamics might be at the origin of the increase in hz μ 0 𝛻H ω = μ 0 𝛻H inh + α eff ω γ We get a negative value of Gmix Unphysical α eff = α sp + α ex Tserkovnyak, PRB 2002 Tshitoyan, PRB 2015
12
Element-selective spin emission from a ferrimagnet
EXPERIMENT 2 Element-selective spin emission from a ferrimagnet
13
Ultra-fast spin emission in magnetic bilayers
In this case the emitted spin current is aligned with the net magnetisation. Is it possible to have zero-magnetisation spintronic emitters of THz radiation? T. Seifert et al., Nature Photonics 2016 T. Kampfrath et al., Nature Nanotech. 2013
14
3d-4f alloys
15
3d-4f alloys C.D. Stanciu et al., PRB 2006 J. Becker, PhD thesis, 2016
16
GdFeCo has a compensation temperature at which M=0
Temperature (K) M(Gd) M(Fe) SiN(5nm) Pt(2nm) Gd25Fe65.6Co9.4(20nm) EASY AXIS Glass
17
We use THz emission spectroscopy to measure spin-emission
E(t)≈ σ ip (t)× z z 800 nm 50 fs
18
The mitted THz radiation has the symmetry of the ISHE
ROOM TEMPERATURE B B B B 𝛔 𝐢𝐩 (𝐭) 𝛔 𝐢𝐩 (𝐭) 𝛔 𝐢𝐩 (𝐭) 𝛔 𝐢𝐩 (𝐭)
19
The mitted THz radiation is sensitive to the Fe spin only
BELOW Tcomp B Gd Fe ABOVE Tcomp B Fe Gd
20
The mitted THz radiation is sensitive to the Fe spin only
𝐌𝟏 E=− M 1 B sin θ1 − M 2 B sin θ2 + J M 1 M 2 cos θ1+θ2 − − K 2 M cos 2 θ − K 2 M cos 2 φ 𝐌𝟐
21
Spin-pumping from anti-ferromagnets
EXPERIMENT 3 Spin-pumping from anti-ferromagnets
22
Spin-pumping from an AFM
FERROMAGNETS ANTI-FERROMAGNETS R. Cheng et al., PRL 2014
23
Spin-pumping from an AFM
100 010 001 KNiF3 TN=246 K Eg=6.2 eV D. Bossini et al., PRB 2014 FERROMAGNETS ANTI-FERROMAGNETS R. Cheng et al., PRL 2014
24
Spin-pumping from an AFM
FERROMAGNETS ANTI-FERROMAGNETS R. Cheng et al., PRL 2014 D. Bossini et al., PRB 2014
25
SUMMARY 1 2 3 Nijmegen Leeds Prague Alexey Kimel Tom Moore
Spin-Hall effect in anti-ferromagnets Element-selective spin-emission Cambridge Vahe Tshytoyan Andrew Irvine Andrew Ferguson Nijmegen Alexey Kimel Thomas Huisman Rostislav Mikhaylovskiy Theo Rasing Leeds Tom Moore Andrei Mihai, Mannan Ali Prague Tomas Jungwirth 3 Spin-pumping from an anti-ferromagnet Leeds Tom Moore Rowan Temple Chris Marrows Nijmegen Alexey Kimel Thomas Huisman Rostislav Mikhaylovskiy Theo Rasing University of Tokyo Davide Bossini Prague Zbynek Soban Tomas Jungwirth Nottingham Andrew Rushforth Bryan Gallagher
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.