Download presentation
Presentation is loading. Please wait.
1
Physics 133 Electromagnetism
Vectors Analysis MARLON FLORES SACEDON
2
What the resultant in 3-Dimensions?
Vector analysis Recall the component method: π
π₯ =β πΉ 1π₯ + πΉ 2π₯ +β¦ πΉ 1 π π½ πΉ 2 π¦ π₯ π
π¦ = πΉ 1π¦ + πΉ 2π¦ +β¦ π
= Ξ£π
π₯ Ξ£π
π¦ 2 Magnitude of resultant πΎ= πππ β1 π
π¦ π
π₯ direction of resultant These formulas are for 2-Dimensions only! What the resultant in 3-Dimensions? π§
3
Vector analysis In 3-Dimensions π
π₯ =β πΉ 1π₯ + πΉ 2π₯ +β¦
π§ π₯ π¦ π
π₯ =β πΉ 1π₯ + πΉ 2π₯ +β¦ π
π¦ = πΉ 1π¦ + πΉ 2π¦ +β¦ π
π§ = πΉ 1π§ + πΉ 2π§ +β¦ πΉ 1 Magnitude of resultant π
= Ξ£π
π₯ Ξ£π
π¦ Ξ£π
π§ 2 πΉ 2 πΎ= πππ β1 π΄ π¦ π΄ π₯ directions of resultant π= πππ β1 π΄ π§ π΄ π₯ πΌ= πππ β1 π΄ π§ π΄ π¦
4
Vector analysis Vectors in term of UNIT VECTORS In 3-dimensions
What is Unit Vector? π§ π₯ π¦ A unit vector is a vector that has a magnitude of 1, with no units. Its only purpose is to pointβthat is, to describe a direction in space. A unit vector is often denoted by a lowercase letter with a circumflex, or caret, or "hat": (β§). π π’ : Unit vector of vector π’ π’ : Vector π’ π π π’ : Magnitude of vector π’ Normalized vectors π’ = π’ π’
5
Vector analysis Vectors in term of UNIT VECTORS π π + π π¦ π π + π π₯
+ π π¦ π π¦ π π π π¦ = π π¦ π π π π π₯ π + π π₯ π π₯ π π₯ = π π₯ π π = π π₯ + π π¦ π = π π₯ π + π π¦ π
6
Vector analysis Vectors in term of UNIT VECTORS In 3-dimensions π π π
π§ π₯ π¦ π = π π₯ + π π¦ + π π§ π π§ π π π¦ π π = π π₯ π + π π¦ π + π π§ π π π π π₯ π π π
7
Vector analysis Vector Sum in terms of unit vector Suppose: π΄ + π΅ =
Find: Addition of vectors: π΄ + π΅ Subtraction of vectors: π΄ β π΅ π΄ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π π΅ = π΅ π₯ π + π΅ π¦ π + π΅ π§ π Addition of vectors: π΄ + π΅ π΄ + π΅ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π + π΅ π₯ π + π΅ π¦ π + π΅ π§ π = π΄ π₯ + π΅ π₯ π + π΄ π¦ + π΅ π¦ π + π΄ π§ + π΅ π§ π (b) Subtraction of vectors: π΄ β π΅ π΄ β π΅ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π β π΅ π₯ π + π΅ π¦ π + π΅ π§ π = π΄ π₯ β π΅ π₯ π + π΄ π¦ β π΅ π¦ π + π΄ π§ β π΅ π§ π
8
Vector analysis Vector Sum in terms of unit vector Example:
5 π β3 π + β6 π + π β π Example: = 5β6 π + β3+1 π + 0β π πΆ =5 π β3 π π· =β6 π + π β π =β π β2 π β π =β π +2 π π ANSWER Find: πΆ + π· (b) πΆ β π· Normalized vectors πΆ & π· (b) πΆ β π· = 5 π β3 π β β6 π + π β π =5 π β3 π +6 π β π π =11 π β4 π π Note: Normalizing is the same as finding the equivalent unit vector of a given vector. ANSWER (c) πΆ = πΆ πΆ = 5 π β3 π β =0.86 π β0.51 π π· = π· π· = β6 π + π β π β β =β0.98 π π β0.08 π =β 0.98 π β0.16 π π
9
Vector analysis Product of vectors Scalar product or Dot product
Vector product or Cross product Ex. π΄ dot π΅ is equal to π΄ β π΅ Ex. π΄ cross π΅ is equal to π΄ Γ π΅
10
Vector analysis Product of vectors: The scalar product or Dot product
π΄ β π΅ to be the magnitude of π΄ multiplied by the component of π΅ in the direction of π΄ . π΅ β π΄ to be the magnitude of π΅ multiplied by the component of π΄ in the direction of π΅ . π΅πππ π π΄ π΅ π π π΄ π΅ π΄πππ π π΅ β π΄ =π΅π΄πππ π π΄ β π΅ =π΄π΅πππ π π΄ β π΅ = π΄ π΅ πππ π π΅ β π΄ = π΅ π΄ πππ π So, therefore: π΄ β π΅ = π΅ β π΄
11
π΄ β π΅ =π΄π΅πππ π Vector analysis
Product of vectors: The scalar product or Dot product So, the definition of Scalar or Dot product is, π΄ β π΅ =π΄π΅πππ π The scalar product of unit vectors π β π = π π πππ π =(1)(1) πππ 0 π =1 π β π =1 π β π =1 π β π =0 π β π =0 π β π =0 π β π =0 π β π =0 π β π =0
12
Vector analysis Product of vectors: The scalar product or Dot product
Suppose: Find: π΄ β π΅ π΄ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π π΅ = π΅ π₯ π + π΅ π¦ π + π΅ π§ π Then: π΄ β π΅ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π β π΅ π₯ π + π΅ π¦ π + π΅ π§ π 1 1 = π΄ π₯ π΅ π₯ π β π + π΄ π₯ π΅ π¦ π β π + π΄ π₯ π΅ π§ π β π + π΄ π¦ π΅ π₯ π β π + π΄ π¦ π΅ π¦ π β π + π΄ π¦ π΅ π§ π β π 1 + π΄ π§ π΅ π₯ π β π + π΄ π§ π΅ π¦ π β π + π΄ π§ π΅ π§ π β π π΄ β π΅ = π΄ π₯ π΅ π₯ + π΄ π¦ π΅ π¦ + π΄ π§ π΅ π§ Therefore: So: ABcosΞΈ= π΄ π₯ π΅ π₯ + π΄ π¦ π΅ π¦ + π΄ π§ π΅ π§ π= πππ β1 π΄ π₯ π΅ π₯ + π΄ π¦ π΅ π¦ + π΄ π§ π΅ π§ π΄π΅ Angle between vectors
13
Vector analysis Product of vectors: The scalar product or Dot product
π§ π₯ π¦ Example: Find: Given: πΊ =9 π β3 π + π a) πΊ β π» π» π» = π β6 π b) Angle between vectors πΊ and π» β6 π π Solution: π 9 π πΊ β3 π a) πΊ β π» = πΊ π₯ π» π₯ + πΊ π¦ π» π¦ + πΊ π§ π» π§ π = 9 1 + β3 0 +(1)(β6) =3 ANSWER πππ β1 πΊ π₯ π» π₯ + πΊ π¦ π» π¦ + πΊ π§ π» π§ πΊπ» b) π= =πππ β β β6 2 =πππ β1 [ ] π= π ANSWER
14
π΄ π₯ π΅ = π΄ π΅ π πππ π Vector analysis
Product of vectors: The vector product or Cross product π π π΅ π΄ π π΅ π΄ π π΅ π πππ π΅ π₯ π΄ What is π΄ cross π΅ is equal to π΄ Γ π΅ ? ANSWER: π΄ Γ π΅ to be the magnitude of π΄ multiplied by the component of π΅ perpendicular to π΄ , then multiplied by a unit vector π which is normal to swipe area of the two vectors. π΅ π₯ π΄ =β π΄ π₯ π΅ The property of vector product. π΄ π₯ π΅ = π΄ π΅ π πππ π
15
Vector analysis Product of vectors: The vector product or Cross product The vector product of unit vectors π π₯ π =1 1 π ππ0 π =0 π π₯ π =1 1 π ππ90 π = π π π₯ π =1 1 π ππ90 π =β π π π₯ π =0 π π₯ π =0 π π₯ π =0 π π₯ π = π π π₯ π =β π π π₯ π =β π π π₯ π =β π π π₯ π = π π π₯ π = π
16
Vector analysis Product of vectors: The vector product or Cross product Suppose: Find: π΄ π₯ π΅ π΄ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π π΅ = π΅ π₯ π + π΅ π¦ π + π΅ π§ π Evaluate: π΄ π₯ π΅ = π΄ π₯ π + π΄ π¦ π + π΄ π§ π π₯ π΅ π₯ π + π΅ π¦ π + π΅ π§ π π β π = π΄ π₯ π΅ π₯ π π₯ π + π΄ π₯ π΅ π¦ π π₯ π + π΄ π₯ π΅ π§ π π₯ π β π π + π΄ π¦ π΅ π₯ π π₯ π + π΄ π¦ π΅ π¦ π π₯ π + π΄ π¦ π΅ π§ π π₯ π + π΄ π§ π΅ π₯ π π₯ π π + π΄ π§ π΅ π¦ π π₯ π β π + π΄ π§ π΅ π§ π π₯ π = π΄ π₯ π΅ π¦ π + π΄ π₯ π΅ π§ β π + π΄ π¦ π΅ π₯ β π + π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π§ π΅ π¦ β π π΄ π₯ π΅ = π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π β π΄ π§ π΅ π¦ π β π΄ π₯ π΅ π§ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§ π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§ π π π΄ π₯ π΄ π¦ π΅ π₯ π΅ π¦
17
Vector analysis Product of vectors: The vector product or Cross product π΄ π₯ π΅ = π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π β π΄ π§ π΅ π¦ π β π΄ π₯ π΅ π§ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§
18
Vector analysis Product of vectors: The vector product or Cross product π΄ π₯ π΅ = π΄ π¦ π΅ π§ π + π΄ π§ π΅ π₯ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π β π΄ π§ π΅ π¦ π β π΄ π₯ π΅ π§ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§ π΄ π₯ π΅ = π΄ π¦ π΅ π§ π β π΄ π§ π΅ π¦ π + π΄ π§ π΅ π₯ π β π΄ π₯ π΅ π§ π + π΄ π₯ π΅ π¦ π β π΄ π¦ π΅ π₯ π π΄ π₯ π΅ = π΄ π¦ π΅ π§ β π΄ π§ π΅ π¦ π + π΄ π§ π΅ π₯ β π΄ π₯ π΅ π§ π + π΄ π₯ π΅ π¦ β π΄ π¦ π΅ π₯ π π΄ π₯ π΅ = π π π π΄ π₯ π΄ π¦ π΄ π§ π΅ π₯ π΅ π¦ π΅ π§
19
Vector analysis Product of vectors: The vector product or Cross product Example: Given: Find: πΉ =3 π β5 π +2 π a) πΉ Γ πΊ b) πΊ Γ πΉ πΊ = π β7 π πΉ π₯ πΊ = π π π 3 β β7 = 35β2 π π + 3β0 π =33 π +21 π +3 π πΊ π₯ πΉ = π π π 0 1 β7 3 β5 2 = 2β35 π + β21β0 π + 0β3 π =β33 π β21 π β3 π =β 33 π +21 π +3 π So: πΊ Γ πΉ =β πΉ Γ πΊ
20
Assignment π΄ π΅ πΆ 1) Given: 2) Figure: Find: 300ππ Find: 100ππ 160ππ
πΏ = π +6 π β3 π π΄ π΅ π =6 π β π +7 π 100ππ 25 π 160ππ π =β7 π 65 π 300ππ 40 π Find: a) πΏ Γ π b) πΏ Γ π c) πΏ β π Γ π d) πΏ Γ π β π Γ π e) πΏ Γ π Γ π πΆ Find: f) 5 π Γ π a) Convert the three vectors in terms of unit vectors. g) 5 π Γ π b) Find the vector sum ( π΄ + π΅ + πΆ ) Note: Use the converted vectors in terms of unit vectors to find the sum. h) Find the unit vectors of πΏ , π and π . i) Graph the vectors πΏ , π and π .
21
eNd
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.