Download presentation
Presentation is loading. Please wait.
1
EEE 161 Applied Electromagnetics
Dr. Milica Markovic 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
2
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Chapter 1 Vectors 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
3
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Scalars and Vectors Scalars quantities are defined by magnitude only: Temperature 75 deg. F Mass 75kg Vectors are defined by magnitude and direction: Wind speed 75m/h in NW direction 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
4
Point in Cartesian Coordinate System
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
5
Unit Vectors in Cartesian Coordinates
X-direction Y-direction Z-direction Unit vectors have magnitude of 1! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
6
Position Vector in Cartesian Coordinates
Unit Vectors Components 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
7
Example of Position Vector in Cartesian Coordinates
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
8
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
9
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
More on Vectors Magnitude – length of the vector Direction – Unit vector in the direction of vector A Magnitude = 1 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
10
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Addition of Vectors Head to Tail Rule Parallelogram Rule 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Negative Vector Negative Sign Changes Direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
12
Subtraction of Vectors
First we change direction of vector B Then we add A and –B up! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
13
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Distance Vector Can be represented by two position vectors , Coordinates of points B and E 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
14
Distance Vector Magnitude and Unit Vector
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
15
Vector Multiplication
Scalar or Dot Product Vector or Cross Product Scalar Triple Product Vector Triple Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
16
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Scalar Product Theta is the smaller angle between two vectors Projection of vector B in the direction of vector A (the green line) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
17
Scalar Product in Cartesian Coordinate System
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
18
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
5-min Practice 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
19
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Vector Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
20
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
21
Vector Product in Cartesian Coordinate System
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
22
Properties of Cross Product
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
23
Direction of Vector Product
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
24
Coordinate Systems and vector calculus
Chapters 2 and 3 Coordinate Systems and vector calculus 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
25
Cartesian Coordinates
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
26
Differential Length - Cart Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
27
Differential Surface – Cart Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
28
Differential Volume – Cart Coord
Volume is base times height 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
29
Position Vector in Cylindrical Coordinates
Three coordinates r, θ and z. Θ= 60deg Position vector in Cylindrical Coordinates has only r and z directions! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
30
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
31
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
32
Differential Length –Cyl Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
33
Differential Surface – Cyl Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
34
Differential Volume Cyl Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
35
Magnitude Transformation Relations Cyl Coord – Cart Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
36
Unit Vectors Transformation Relations Cyl-Cart
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
37
Cylindrical-Cartesian Coordinates
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
38
Position Vector in Spherical Coordinates
Three coordinates r, θ and Φ. Position vector in Cylindrical Coordinates is only in the R direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
39
Differential Length – Spherical Coord.
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
40
Differential Surface – Spher. Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
41
Differential Volume- Spher Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
42
Distance Between Two Points
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
43
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Line Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
44
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Surface Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
45
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Volume Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
46
Representation of Vector Fields
Vector Fields are usually represented by arrows. The stronger the field at a point the longer the vector at the point. 2. The stronger the field in an area the higher the density of vectors in that area. All vectors have the same magnitude. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
47
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
A Del Operator Del operator is used to define Gradient Divergence Laplacian Curl. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
48
Gradient of a Scalar Field
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
49
Directional Derivative
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
50
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Flux of a vector Weak Strong Number of vector lines “flowing” through a surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
51
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Divergence of a Vector 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
52
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Divergence Theorem Volume integral thorough of divergence over a volume ~ this is usually easier to find. Flux through a closed surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
53
Curl of a Vector = Rotation (Curling) of Field
Direction perpendicular to vector field. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
54
Finding the direction of curl with paddle
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
55
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Stoke’s Theorem Surface integral of the curl of A over the surface bounded by S Circulation of vector A 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
56
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Laplacian of a Scalar Divergence of Gradient Scalar field is harmonic if: (Laplace’s Equation) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
57
Solenoidal or Divergenceless Field
Field has no source or sink. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
58
Irrotational or Potential Field
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
59
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
60
Classification of Vector Fields
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
61
Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Why isn’t del D equal to zero If the curl is zero is the field not spinning Issue with D If the curl and divergence are zero what’s happening Is the curl of C positive or negative Are you using the density or length notation Can we write del cross A =magnitude del magn 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.