Presentation is loading. Please wait.

Presentation is loading. Please wait.

EEE 161 Applied Electromagnetics

Similar presentations


Presentation on theme: "EEE 161 Applied Electromagnetics"— Presentation transcript:

1 EEE 161 Applied Electromagnetics
Dr. Milica Markovic 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

2 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Chapter 1 Vectors 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

3 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Scalars and Vectors Scalars quantities are defined by magnitude only: Temperature 75 deg. F Mass 75kg Vectors are defined by magnitude and direction: Wind speed 75m/h in NW direction 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

4 Point in Cartesian Coordinate System
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

5 Unit Vectors in Cartesian Coordinates
X-direction Y-direction Z-direction Unit vectors have magnitude of 1! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

6 Position Vector in Cartesian Coordinates
Unit Vectors Components 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

7 Example of Position Vector in Cartesian Coordinates
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

8 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

9 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
More on Vectors Magnitude – length of the vector Direction – Unit vector in the direction of vector A Magnitude = 1 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

10 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Addition of Vectors Head to Tail Rule Parallelogram Rule 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

11 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Negative Vector Negative Sign Changes Direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

12 Subtraction of Vectors
First we change direction of vector B Then we add A and –B up! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

13 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Distance Vector Can be represented by two position vectors , Coordinates of points B and E 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

14 Distance Vector Magnitude and Unit Vector
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

15 Vector Multiplication
Scalar or Dot Product Vector or Cross Product Scalar Triple Product Vector Triple Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

16 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Scalar Product Theta is the smaller angle between two vectors Projection of vector B in the direction of vector A (the green line) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

17 Scalar Product in Cartesian Coordinate System
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

18 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
5-min Practice 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

19 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Vector Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

20 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

21 Vector Product in Cartesian Coordinate System
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

22 Properties of Cross Product
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

23 Direction of Vector Product
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

24 Coordinate Systems and vector calculus
Chapters 2 and 3 Coordinate Systems and vector calculus 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

25 Cartesian Coordinates
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

26 Differential Length - Cart Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

27 Differential Surface – Cart Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

28 Differential Volume – Cart Coord
Volume is base times height 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

29 Position Vector in Cylindrical Coordinates
Three coordinates r, θ and z. Θ= 60deg Position vector in Cylindrical Coordinates has only r and z directions! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

30 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

31 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

32 Differential Length –Cyl Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

33 Differential Surface – Cyl Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

34 Differential Volume Cyl Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

35 Magnitude Transformation Relations Cyl Coord – Cart Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

36 Unit Vectors Transformation Relations Cyl-Cart
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

37 Cylindrical-Cartesian Coordinates
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

38 Position Vector in Spherical Coordinates
Three coordinates r, θ and Φ. Position vector in Cylindrical Coordinates is only in the R direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

39 Differential Length – Spherical Coord.
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

40 Differential Surface – Spher. Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

41 Differential Volume- Spher Coord
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

42 Distance Between Two Points
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

43 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Line Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

44 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Surface Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

45 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Volume Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

46 Representation of Vector Fields
Vector Fields are usually represented by arrows. The stronger the field at a point the longer the vector at the point. 2. The stronger the field in an area the higher the density of vectors in that area. All vectors have the same magnitude. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

47 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
A Del Operator Del operator is used to define Gradient Divergence Laplacian Curl. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

48 Gradient of a Scalar Field
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

49 Directional Derivative
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

50 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Flux of a vector Weak Strong Number of vector lines “flowing” through a surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

51 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Divergence of a Vector 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

52 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Divergence Theorem Volume integral thorough of divergence over a volume ~ this is usually easier to find. Flux through a closed surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

53 Curl of a Vector = Rotation (Curling) of Field
Direction perpendicular to vector field. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

54 Finding the direction of curl with paddle
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

55 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Stoke’s Theorem Surface integral of the curl of A over the surface bounded by S Circulation of vector A 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

56 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Laplacian of a Scalar Divergence of Gradient Scalar field is harmonic if: (Laplace’s Equation) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

57 Solenoidal or Divergenceless Field
Field has no source or sink. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

58 Irrotational or Potential Field
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

59 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

60 Classification of Vector Fields
11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

61 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Why isn’t del D equal to zero If the curl is zero is the field not spinning Issue with D If the curl and divergence are zero what’s happening Is the curl of C positive or negative Are you using the density or length notation Can we write del cross A =magnitude del magn 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics


Download ppt "EEE 161 Applied Electromagnetics"

Similar presentations


Ads by Google