Presentation is loading. Please wait.

Presentation is loading. Please wait.

Klausโ€™s work on the Spin-Boson Problem*

Similar presentations


Presentation on theme: "Klausโ€™s work on the Spin-Boson Problem*"โ€” Presentation transcript:

1 Klausโ€™s work on the Spin-Boson Problem*
Tony Leggett Department of Physics University of Illinois at Urbana-Champaign Klaus Schulten Memorial Symposium The Beckman Institute, University of Illinois Wednesday, November 8, 2017 *K. Schulten and M. Tesch, Chemical Physics 158, 421 (1991) Dong Xu and K. Schulten, Chemical Physics 182, 91 (1994) (โ€œXSโ€)

2 Electron transfer ( ๐‘ƒ ๐‘† ๐ป ๐ฟ โ†’ ๐‘ƒ ๐‘  + ๐ป ๐ฟ โˆ’ ) in photosynthetic reaction center of Rhodopseudomonas Viridis a naรฏve condensed-matter physicistโ€™s cartoon: ๐‘’ โˆ’ ( ) ๏€ ๏‚ฎ quinones etc. ๐‘ƒ ๐‘  (โ€œspecial pairโ€) ๐ป ๐ฟ (bacteriopheophytin) Experimental fact: backward rate at ๐‘…๐‘‡~ 10n s โˆ’1 forward rate at ๐‘…๐‘‡~ 3p s โˆ’1 ๏‚ฏ increases by factor ๏พ4 by 8K Suggests: QM effects important also: little dependence on redox energy

3 From QM point of view, special case of more general 2๏€ญstate problem
environment L R ๐œ” ๐‘œ v L R redox energy ฯต In present case, โ€œenvironmentโ€ is vibrating nuclei of protein: nuclear coordinates coupled to tunnelling electron by Coulomb force. In general case need to consider effect of coupling to environment on barrier transmission effect of coupling to environment on coherence between ๐ฟ and ๐‘… . but in present case Born-Oppenheimer approximation probably good, ๏ƒž can neglect effect (a) ๏ƒž spin-boson model

4 Generic spin-boson model:
๐ป = ๐ป sys + ๐ป env + ๐ป coup ๏‚ญ ๏‚ญ ๏‚ญ system environment coupling ๐ป sys = 1 2 ฮ” ๐œŽ ๐‘ฅ ๐œ– ๐œŽ ๐‘ง ๏‚ฌ โ€œspinโ€ ๏‚ญ โ€œbareโ€ tunneling matrix element offset ๐œŽ ๐‘ง =+1 ๏‚ฏ ฯต ๐œŽ ๐‘ง =โˆ’1 ฮ” ๐ป env = ๐›ผ=1 ๐‘ ๐‘ ๐›ผ 2 2 ๐‘š ๐›ผ ๐‘š ๐›ผ ๐œ” ๐›ผ 2 ๐‘ฅ ๐›ผ 2 ๏‚ฌ โ€œbosonsโ€ (SHOโ€™s) ๐ป coup = ๐œŽ ๐‘ง ๐›ผ=1 ๐‘ ๐‘ ๐›ผ ๐‘ฅ ๐›ผ

5 In our case, multimode Marcus model:
Correspondence: tunneling electron ๏‚ฎ spin bare tunneling amplitude ๏‚ฎ ฮ” nuclear coordinates ๏‚ฎ ๐‘ฅ ๐›ผ โ‰ก ๐‘ž ๐›ผ โˆ’ 1 2 ๐‘ž ๐‘œ๐›ผ coupling constant ๏‚ฎ ๐‘ ๐›ผ โ‰ก ๐‘š ๐›ผ ๐œ” ๐‘œ๐›ผ 2 ๐‘ž ๐‘œ๐›ผ redox energy ๏‚ฎ ฯต We would like to know transfer rate ๐‘˜ ๐œ–,๐‘‡ as function of redox energy ฯต and temperature T.

6 Crucial feature of spin-boson problem:
Provided we are interested only in dynamics of spin, complete information about effect of environment is encapsulated in ๐ฝ ๐œ” โ‰ก ๐œ‹ 2 ๐›ผ=1 ๐‘ ๐‘ ๐›ผ 2 ๐‘š ๐›ผ ๐œ” ๐›ผ ๐›ฟ ๐œ”โˆ’ ๐œ” ๐›ผ ๏‚ฌ coupling spectral density which can often be obtained from classical arguments (e.g. in superconducting devices, from experiment in classical regime). Schulten et al. obtain from classical MD simulation: ๐ฝ ๐œ” = ๐›ผ๐œ” 1+ ๐œ” 2 ๐œ 2 dimensionless ( XS:๐œ‚) For ๐œ”๐œโ‰ช1, dissipation is ohmic with ฮฑโ‰ซ1, i.e. strongly overdamped. Some estimated numbers for RPV (in secs) โ„/๐‘˜๐‘‡ ~25 f sec ฯ„ (from simulation) ~100 f sec โ„/๐œŽ (from simulation) ~3 f sec en. fluctuation hence ๐›ผ= ๐œŽ 2 ๐œ/โ„Ž๐‘˜๐‘‡ ~25 ฮ” โˆ’1 ๐‘…๐‘‡ ~100 f sec โŸน ฮ” 2 ๐œ โˆ’1 ~100 f sec forward transfer rate ๐‘˜ exp โˆ’1 ๐‘…๐‘‡ so ๐‘˜ exp slowest rate in problem, but ฮ”~ ๐œ โˆ’1 ~ cutoff for โ€œohmicโ€ behavior however, ๐‘˜ exp โ‰ช ๐œ โˆ’1 โ†‘ ~10 psec

7 General treatment of spin-boson problem*
Formulation of problem: Given form of ๐ฝ ๐œ” (and ฮ”, ฯต, T), set initial condition ๐œŽ ๐‘ง ๐‘ก =+1. Evolve according to ๐ป ๐‘ก๐‘œ๐‘ก , calculate ๐œŽ ๐‘ง ๐‘ก โ‰ก๐‘ƒ ๐‘ก , (and hence, if it is exponentially decaying, transfer rate ๐‘˜โ‰กโˆ’๐‘™๐‘›๐‘ƒ ๐‘ก /๐‘ก). Step 1 (general). Derive exact formal expression for ๐‘ƒ ๐‘ก in terms of ๐ฝ ๐œ” ,ฮ”,๐œ– and T, and represent in graphical form (corr. to off- diagonal elements of ๐œŒ ) (corr. to diagonal elements of ๐œŒ ) Step 2. Under certain conditions, justify โ€œnoninteracting blip approximationโ€ (NIBA), convert to much simpler form (in principle soluble by Laplace transform, if one can do the integrals) Step 3. Obtain analytic expression for ๐‘ƒ ๐‘ก and thus when appropriate for ๐‘˜ ๐œ–,๐‘‡ . *A.J. Leggett, S. Chakravarty, A.T. Dorsey, Matthew P.A. Fisher, A. Garg, and W. Zwerger. Revs. Mod. Phys. 59, 1 (1987).

8 In the overdamped case (only) step 2 gives the โ€œgolden-ruleโ€ result
๐‘ƒ ๐‘ก =๐‘ƒ ๏‚ฅ + 1โˆ’๐‘ƒ ๏‚ฅ expโˆ’ฮ“๐‘ก ๐‘ƒ ๏‚ฅ โ‰กโˆ’๐‘ก๐‘Ž๐‘›โ„Ž ๐œ–/ ๐‘˜ ๐ต ๐‘‡ ฮ“ ฮ”,๐œ–,๐‘‡ = ฮ” โ„ 2 ๐‘‚ ๏‚ฅ ๐‘‘๐‘ก cos ๐œ–๐‘ก/โ„ ๐‘๐‘œ๐‘  ๐‘„ 1 ๐‘ก /๐œ‹โ„ expโˆ’ ๐‘„ 2 ๐‘ก /๐œ‹โ„ where ๐‘„ 1 ๐‘ก โ‰ก ๐‘‚ ๏‚ฅ ๐‘‘๐œ” ๐œ” 2 ๐ฝ ๐œ” sin ๐œ”๐‘ก ๐‘„ 2 ๐‘ก โ‰ก ๐‘‚ ๏‚ฅ ๐‘‘๐œ” ๐œ” 2 ๐ฝ ๐œ” 1โˆ’ cos ๐œ”๐‘ก coth ๐›ฝโ„๐œ”/2 In the limit ๐œโ†’๏‚ฅ (pure ohmic dissipation with cut off ๐œ” ๐‘ โ‰ซ ฮ”,๐œ–,๐‘˜ ๐ต ๐‘‡) ฮ“ ฮ”,๐œ–,๐‘‡ โ‰ก๐‘˜ ๐œ–,๐‘‡ can be evaluated analytically: ๐‘˜ ๐œ–,๐‘‡ = ฮ” 2 ๐œ” ๐‘ ๐‘“ ๐œ–,๐‘‡ where for ๐œ–=0, ๐‘‡โ‰ 0 ๐‘“ ๐‘‡ =const. ๐‘˜ ๐ต ๐‘‡/โ„ ๐œ” ๐‘ 2๐›ผโˆ’1 for ๐‘‡=0, ๐œ– โ‰ 0 ๐‘“ ๐œ– =const. ๐œ–/โ„ ๐œ” ๐‘ 2๐›ผโˆ’1 for ๐‘‡,๐œ– both โ‰ 0 messy formula involving Euler ฮ“-function

9 However, for the RPV tunneling problem the cut off frequency ๐œ” ๐‘ ~ ๐œ โˆ’1 is quite comparable to ฮ”,๐œ–,๐‘‡, so we must keep the full form of ๐ฝ ๐œ” , namely ๐ฝ ๐œ” = ๐›ผ๐œ” 1+ ๐œ” 2 ๐œ 2 XS show that for ๐‘˜ ๐ต ๐‘‡โ‰ซโ„/๐œ the resulting expression for ฮ“, hence for ๐‘˜ ๐œ–,๐‘‡ can be evaluated analytically and the result expressed in the Marcus-like form (Garg et al., 1985) ๐‘˜ ๐œ–,๐‘‡ =const. 1 ๐›ฟ exp โˆ’ ๐œ–โˆ’ ๐œ– ๐‘š 2 /2 ๐›ฟ 2 where ๐œ–โ‰ก c-number well bias (โ‰ก redox energy) ๐œ– ๐‘š โ‰ก ๐œ‹ ๐‘‚ ๏‚ฅ ๐ฝ ๐œ” ๐œ” ๐‘‘๐œ” (โ‰ก solvation energy) ๐›ฟ 2 โ‰ก โ„ ๐œ‹ ๐‘‚ ๏‚ฅ ๐ฝ ๐œ” coth ๐›ฝโ„๐œ”/2 ๐‘‘๐œ” (โ‰กฮ” ๐œ– 2 , fluctuation energy) quantum fluctuations

10 At lower T it is necessary to calculate ๐‘˜ ๐œ–,๐‘‡ numerically, inputting the specific values of ฮฑ and ฯ„ for RPV. XSโ€™s results: Conclusions: At RT, simple Marcus theory works well (not too surprising, since ๐‘˜ ๐‘‡ ๐‘… >โ„/๐œ) At lower T (but not ๐‘‡=0), generalized Marcus theory with ๐‘‡๐นโ†’๐‘„๐น works well At ๐‘‡~0, (or for more general problems, e.g. liquid solvation) need to evaluate GR expression numerically. Golden Rule (would โ€œboson samplingโ€ help?)


Download ppt "Klausโ€™s work on the Spin-Boson Problem*"

Similar presentations


Ads by Google