Presentation is loading. Please wait.

Presentation is loading. Please wait.

EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011

Similar presentations


Presentation on theme: "EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011"— Presentation transcript:

1 EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011
Professor Ronald L. Carter

2 Review the Following R. L. Carter’s web page:
EE 5340 web page and syllabus. (Refresh all EE 5340 pages when downloading to assure the latest version.) All links at: University and College Ethics Policies Makeup lecture at noon Friday (1/28) in 108 Nedderman Hall. This will be available on the web. ©rlc L04-28Jan2011

3 First Assignment Send e-mail to ronc@uta.edu
On the subject line, put “5340 ” In the body of message include address: ______________________ Your Name*: _______________________ Last four digits of your Student ID: _____ * Your name as it appears in the UTA Record - no more, no less ©rlc L04-28Jan2011

4 Second Assignment Submit a signed copy of the document posted at
©rlc L04-28Jan2011

5 Quantum density of states function
1 dim electron wave #s range for n+1 “atoms” is 2p/L < k < 2p/a where a is “interatomic” distance and L = na is the length of the assembly (k = 2p/l) Shorter ls, would “oversample” if n increases by 1, dp is h/L Extn 3D: E = p2/2m = h2k2/2m so a vol of p-space of 4pp2dp has h3/LxLyLz ©rlc L04-28Jan2011

6 QM density of states (cont.)
So density of states, gc(E) is (Vol in p-sp)/(Vol per state*V) = 4pp2dp/[(h3/LxLyLz)*V] Noting that p2 = 2mE, this becomes gc(E) = {4p(2mn*)3/2/h3}(E-Ec)1/2 and E - Ec = h2k2/2mn* Similar for the hole states where Ev - E = h2k2/2mp* ©rlc L04-28Jan2011

7 Fermi-Dirac distribution fctn
The probability of an electron having an energy, E, is given by the F-D distr fF(E) = {1+exp[(E-EF)/kT]}-1 Note: fF (EF) = 1/2 EF is the equilibrium energy of the system The sum of the hole probability and the electron probability is 1 ©rlc L04-28Jan2011

8 Fermi-Dirac DF (continued)
So the probability of a hole having energy E is 1 - fF(E) At T = 0 K, fF (E) becomes a step function and 0 probability of E > EF At T >> 0 K, there is a finite probability of E >> EF ©rlc L04-28Jan2011

9 Maxwell-Boltzman Approximation
fF(E) = {1+exp[(E-EF)/kT]}-1 For E - EF > 3 kT, the exp > 20, so within a 5% error, fF(E) ~ exp[-(E-EF)/kT] This is the MB distribution function MB used when E-EF>75 meV (T=300K) For electrons when Ec - EF > 75 meV and for holes when EF - Ev > 75 meV ©rlc L04-28Jan2011

10 Electron Conc. in the MB approx.
Assuming the MB approx., the equilibrium electron concentration is ©rlc L04-28Jan2011

11 Electron and Hole Conc in MB approx
Similarly, the equilibrium hole concentration is po = Nv exp[-(EF-Ev)/kT] So that nopo = NcNv exp[-Eg/kT] ni2 = nopo, Nc,v = 2{2pm*n,pkT/h2}3/2 Nc = 2.8E19/cm3, Nv = 1.04E19/cm3 and ni = 1.45E10/cm3 ©rlc L04-28Jan2011

12 Calculating the equilibrium no
The idea is to calculate the equilibrium electron concentration no for the FD distribution, where fF(E) = {1+exp[(E-EF)/kT]}-1 gc(E) = [4p(2mn*)3/2(E-Ec)1/2]/h3 ©rlc L04-28Jan2011

13 Equilibrium con- centration for no
Earlier quoted the MB approximation no = Nc exp[-(Ec - EF)/kT],(=Nc exp hF) The exact solution is no = 2NcF1/2(hF)/p1/2 Where F1/2(hF) is the Fermi integral of order 1/2, and hF = (EF - Ec)/kT Error in no, e, is smaller than for the DF: e = 31%, 12%, 5% for -hF = 0, 1, 2 ©rlc L04-28Jan2011

14 Equilibrium con- centration for po
Earlier quoted the MB approximation po = Nv exp[-(EF - Ev)/kT],(=Nv exp h’F) The exact solution is po = 2NvF1/2(h’F)/p1/2 Note: F1/2(0) = 0.678, (p1/2/2) = 0.886 Where F1/2(h’F) is the Fermi integral of order 1/2, and h’F = (Ev - EF)/kT Errors are the same as for po ©rlc L04-28Jan2011

15 Figure (a) Fermi-Dirac distribution function describing the probability that an allowed state at energy E is occupied by an electron. (b) The density of allowed states for a semiconductor as a function of energy; note that g(E) is zero in the forbidden gap between Ev and Ec. (c) The product of the distribution function and the density-of-states function. (p M&K) ©rlc L04-28Jan2011

16 Degenerate and nondegenerate cases
Bohr-like doping model assumes no interaction between dopant sites If adjacent dopant atoms are within 2 Bohr radii, then orbits overlap This happens when Nd ~ Nc (EF ~ Ec), or when Na ~ Nv (EF ~ Ev) The degenerate semiconductor is defined by EF ~/> Ec or EF ~/< Ev ©rlc L04-28Jan2011

17 Figure Energy-gap narrowing Eg as a function of electron concentration. [A. Neugroschel, S. C. Pao, and F. A. Lindhold, IEEE Trans. Electr. Devices, ED-29, 894 (May 1982).] taken from p M&K) ©rlc L04-28Jan2011

18 Donor ionization The density of elec trapped at donors is nd = Nd/{1+[exp((Ed-EF)/kT)/2]} Similar to FD DF except for factor of 2 due to degeneracy (4 for holes) Furthermore nd = Nd - Nd+, also For a shallow donor, can have Ed-EF >> kT AND Ec-EF >> kT: Typically EF-Ed ~ 2kT ©rlc L04-28Jan2011

19 Donor ionization (continued)
Further, if Ed - EF > 2kT, then nd ~ 2Nd exp[-(Ed-EF)/kT], e < 5% If the above is true, Ec - EF > 4kT, so no ~ Nc exp[-(Ec-EF)/kT], e < 2% Consequently the fraction of un-ionized donors is nd/no = 2Nd exp[(Ec-Ed)/kT]/Nc = 0.4% for Nd(P) = 1e16/cm3 ©rlc L04-28Jan2011

20 Figure 1. 9 Electron concentration vs
Figure 1.9 Electron concentration vs. temperature for two n-type doped semiconductors: (a) Silicon doped with 1.15 X 1016 arsenic atoms cm-3[1], (b) Germanium doped with 7.5 X 1015 arsenic atoms cm-3[2]. (p.12 in M&K) ©rlc L04-28Jan2011

21 References *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. ©rlc L04-28Jan2011


Download ppt "EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011"

Similar presentations


Ads by Google