Presentation is loading. Please wait.

Presentation is loading. Please wait.

Domain, Range, Maximum and Minimum

Similar presentations


Presentation on theme: "Domain, Range, Maximum and Minimum"β€” Presentation transcript:

1 Domain, Range, Maximum and Minimum
Radical Functions Domain, Range, Maximum and Minimum

2 What is a radical function?
Definition: Any expression of the form 𝑛 π‘Ž denoting the principal nth root of π‘Ž where 𝑛>1. 𝑛 π‘Ž ;π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛=2, 3, 4, 5, … What is the most common form of the equation? 𝑓 π‘₯ = π‘₯ = π‘₯ 1 2

3 Square Root of X: 𝑓 π‘₯ = π‘₯ Domain: [0,∞) Range: [0,∞) 𝑦= π‘₯ X Y -1 -----
𝑦= π‘₯ X Y -1 ----- 1 4 2 9 3 16 25 5 Domain: [0,∞) Range: [0,∞)

4 Cube Root of X: 𝑓 π‘₯ = 3 π‘₯ Domain: (βˆ’βˆž,∞) Range: (βˆ’βˆž,∞) X Y -27 -3 -8
-1 1 8 2 27 3 Domain: (βˆ’βˆž,∞) Range: (βˆ’βˆž,∞)

5 Other Radical Functions
𝑓 π‘₯ = π‘₯ 𝑓 π‘₯ = 3 π‘₯ 𝑓 π‘₯ = 4 π‘₯

6 Looking at the Radical 𝑛 π‘₯ ;π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑛 π‘₯ ;π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 𝑖𝑠 π‘œπ‘‘π‘‘ 0 =0
n is even – 2, 4, 6, … Restrictions: What can’t the square root be? Negative!!! Can it be 0? ( 0 ) Yes!!! 0 =0 n is odd – 3, 5, 7, … Restrictions? Can x be negative? Yes!!! Can it be 0? ( 0 ) 0 =0

7 Domain and Range Domain: x-values Range: y-values
Lowest x value to greatest x value. Even: π‘₯β‰₯0 x is nonnegative Odd: x can be any real number. Lowest y value to greatest y value. Even: 𝑓 π‘₯ β‰₯0 or 𝑦β‰₯0 Odd: 𝑓(π‘₯) or 𝑦 can be any real number.

8 Absolute Maximum and Minimum
Domain: [0,∞) Range:[0,∞) Max: (0, -2) Min: (-3,0)

9 Finding Domain: 𝑛 π‘₯ ;where n is even
Review – Restrictions: What can’t the square root be? Negative!!! So, the value under the square root must be β‰₯0. Example: 𝑓 π‘₯ = π‘₯βˆ’5 π‘₯βˆ’5β‰₯0→𝒙β‰₯πŸ“ Domain: [πŸ“,∞) Range: [𝟎,∞) 𝑓 π‘₯ = 3π‘₯+6 3π‘₯+6β‰₯0β†’3π‘₯β‰₯βˆ’6→𝒙β‰₯βˆ’πŸ Domain: [βˆ’πŸ,∞)

10 Multiplying or Dividing by a Negative
More Examples: Multiplying or Dividing by a Negative Graphs 𝑓 π‘₯ = 4βˆ’π‘₯ 4βˆ’π‘₯β‰₯0β†’βˆ’π‘₯β‰₯βˆ’4β†’π’™β‰€πŸ’ Domain: (βˆ’βˆž,4] Range: [0,∞) 𝑓 π‘₯ = βˆ’ 1 2 π‘₯βˆ’7 βˆ’ 1 2 π‘₯βˆ’7β‰₯0β†’βˆ’ 1 2 π‘₯β‰₯7 β†’π’™β‰€βˆ’πŸπŸ’ Domain: (βˆ’βˆž,βˆ’14]

11 More Examples: 𝑓 π‘₯ = 3 π‘₯βˆ’1 𝑓 π‘₯ = 4 4π‘₯+12 π‘₯βˆ’1β‰₯0→𝒙β‰₯𝟏 4π‘₯+12β‰₯0β†’4π‘₯β‰₯βˆ’12
Different Roots: πŸ‘ 𝒙 , πŸ’ 𝒙 , … Graphs 𝑓 π‘₯ = 3 π‘₯βˆ’1 π‘₯βˆ’1β‰₯0→𝒙β‰₯𝟏 Domain: (βˆ’βˆž,∞) Range: (βˆ’βˆž,∞) 𝑓 π‘₯ = 4 4π‘₯+12 4π‘₯+12β‰₯0β†’4π‘₯β‰₯βˆ’12 →𝒙β‰₯βˆ’πŸ‘ Domain: [βˆ’3,∞) Range: [0,∞)

12 Equations where the range change!
More Examples: Equations where the range change! Graphs 𝑓 π‘₯ = π‘₯+2 βˆ’5 π‘₯+2β‰₯0→𝒙β‰₯βˆ’πŸ Domain: [βˆ’2,∞) Range: [βˆ’5,∞) 𝑓 π‘₯ = 3βˆ’π‘₯ +7 3βˆ’π‘₯β‰₯0β†’βˆ’π‘₯β‰₯βˆ’3β†’π’™β‰€πŸ‘ Domain: (βˆ’βˆž,3] Range: [7,∞)


Download ppt "Domain, Range, Maximum and Minimum"

Similar presentations


Ads by Google