Presentation is loading. Please wait.

Presentation is loading. Please wait.

Right Angled Trigonometry

Similar presentations


Presentation on theme: "Right Angled Trigonometry"β€” Presentation transcript:

1 Right Angled Trigonometry
Tuesday, 27 November 2018

2 Pythagoras Theorem Hypotenuse NB
c a b NB To find the Hypotenuse we must square the other sides and then add together. To find any other side we square the sides and subtract. The side is then found by taking the square root.

3 𝑃𝑄 2 = 21 2 + 15 2 𝑃𝑄 2 =666 𝑃𝑄 = 666 𝑃𝑄 =26m Example
Find the length of PQ correct to 2 significant figures 21 m 15 m P R Q 𝑃𝑄 2 = 𝑃𝑄 2 =666 𝑃𝑄 = 666 𝑃𝑄 =26m

4 Example Find the value of y correct to 1 decimal place. 𝑦 2 = βˆ’ 14.3 cm 3.7 cm y 𝑦 2 =190.8 𝑦= 𝑦=13.8cm

5 Example A ladder 17m long reaches 15m up a vertical wall. If it rests on horizontal ground, how far is its foot from the foot of the wall? π‘₯ 2 = 17 2 βˆ’ 15 2 π‘₯ 2 =64 17m π‘₯= 64 15m π‘₯=8m π‘₯

6 Formulae to learn 𝑂𝑝𝑝 𝐴𝑑𝑗 tan 𝐴 = 𝑂𝑝𝑝 𝐻𝑦𝑝 sin 𝐴 = 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 =
Hyp Opp 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 = A Adj b π‘Ž 2 + 𝑏 2 = 𝑐 2

7 π‘Ž 𝑐 tan 𝐴 = π‘Ž 𝑏 sin 𝐴 = 𝑐 𝑏 cos 𝐴 = π‘Ž 𝑏 sin 𝐴 cos 𝐴 = Γ— 𝑏 𝑐 = π‘Ž 𝑏
b a 𝑐 𝑏 cos 𝐴 = B A c π‘Ž 𝑏 sin 𝐴 cos 𝐴 = Γ— 𝑏 𝑐 = π‘Ž 𝑏 = π‘Ž 𝑐 = tan 𝐴 𝑐 𝑏 tan 𝐴 = sin 𝐴 cos 𝐴

8 Trig Ratios for 45Β° tan 45 = 1 1 2 1 sin 45 = 45 1 2 cos 45 = 1

9 tan 60 = 3 3 2 sin 60 = 1 2 3 cos 60 = tan 30 = 1 3 1 2 sin 30 = 3 2
Trig ratios for 30Β° and 60Β° tan 60 = 3 30 3 2 sin 60 = 2 1 2 3 cos 60 = 60 tan 30 = 1 3 1 1 2 sin 30 = 3 2 cos 30 =

10 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 = 𝑃𝑄 52 cos 32 = 52Γ—cos 32 = 𝑃𝑄 𝑃𝑄= 44.10cm Example
Calculate the length of PQ in the triangle PQR Opp 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 = 𝑃𝑄 52 cos 32 = Hyp Adj 52Γ—cos 32 = 𝑃𝑄 𝑃𝑄= 44.10cm

11 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 = 4.6 π‘‹π‘Œ cos 59 = XYΓ—cos 59 = 4.6 4.6 cos 59 π‘‹π‘Œ= π‘‹π‘Œ=
Example Calculate the length XY in the triangle XYZ 𝐴𝑑𝑗 𝐻𝑦𝑝 Hyp cos 𝐴 = 4.6 π‘‹π‘Œ cos 59 = Opp Adj XYΓ—cos 59 = 4.6 4.6 cos 59 π‘‹π‘Œ= π‘‹π‘Œ= 8.93cm

12 𝑂𝑝𝑝 𝐻𝑦𝑝 sin 𝐴 = π‘₯ 5 sin 12 = 5Γ—sin 12 = π‘₯ π‘₯= 1.03…cm ∴𝐡𝐢= 2.08cm
Example Calculate the length of BC in the triangle ABC. 𝑂𝑝𝑝 𝐻𝑦𝑝 Hyp sin 𝐴 = Opp π‘₯ π‘₯ 5 12 sin 12 = Adj 5Γ—sin 12 = π‘₯ π‘₯= 1.03…cm ∴𝐡𝐢= 2.08cm

13 𝑂𝑝𝑝 𝐴𝑑𝑗 Tan 𝐴 = 𝑃𝑅 1000 Tan 20 = 1000Γ—Tan 20 = 𝑃𝑅 𝑃𝑅= 363.97m Example
A surveyor, P, is 1000m away on horizontal ground from the foot of a radio mast, QR. From P the angle of elevation of the top, R, of the mast is 20ο‚°. Find the height of the mast. Assume the surveyor’s height to be negligible. S P R 1000 20 Hyp opp Adj With a written problem the first step is to draw a sketch. 𝑂𝑝𝑝 𝐴𝑑𝑗 Tan 𝐴 = 𝑃𝑅 1000 Tan 20 = 1000Γ—Tan 20 = 𝑃𝑅 𝑃𝑅= 363.97m

14 𝑂𝑝𝑝 𝐴𝑑𝑗 tan 𝐴 = 100 𝑑 tan 32 = dΓ—tan 32 = 100 100 tan 32 𝑑= 𝑑= 160.03m
Example From the top of a vertical cliff 100m high the angle of depression of a boat out at sea is 32ο‚°. How far is the boat from the foot of the cliff? 32 100 d Hyp Opp 𝑂𝑝𝑝 𝐴𝑑𝑗 tan 𝐴 = Adj 100 𝑑 tan 32 = dΓ—tan 32 = 100 100 tan 32 𝑑= 𝑑= 160.03m

15 𝑂𝑝𝑝 𝐻𝑦𝑝 sin 𝐴 = 4 6 sin 𝐴 = 𝐴= sin βˆ’1 0.66 𝐴= 41.8Β° Example
Calculate the size of angle A in the triangle ABC Opp 𝑂𝑝𝑝 𝐻𝑦𝑝 sin 𝐴 = Adj 4 6 sin 𝐴 = Hyp 𝐴= sin βˆ’ 𝐴= 41.8Β°

16 𝑂𝑝𝑝 𝐴𝑑𝑗 tan 𝐴 = 1.2 4.7 Tan 𝑋 = 𝑋= tan βˆ’1 0.255 𝑋= 14.32Β° 𝑂𝑝𝑝 𝐴𝑑𝑗
Example Find the size of angle x in each of the following (i) (ii) 𝑂𝑝𝑝 𝐴𝑑𝑗 tan 𝐴 = Tan 𝑋 = 𝑋= tan βˆ’ 𝑋= 14.32Β° 𝑂𝑝𝑝 𝐴𝑑𝑗 tan 𝐴 = 10 3.7 tan 𝑋 = 𝑋= tan βˆ’ 𝑋= 69.70Β°

17 (iii) 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 = 7 12 Cos 𝑋 = 𝑋= cos βˆ’ 𝑋= 54.31Β°

18 β†’ 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 = 3 8 Cos 𝑄 = 𝑄= cos βˆ’1 0.375 𝑄= 68.0Β° Example
Calculate the size of angle PQR in the triangle below. P 𝐴𝑑𝑗 𝐻𝑦𝑝 cos 𝐴 = 8 β†’ 3 8 Cos 𝑄 = 𝑄= cos βˆ’ Q 3 𝑄= 68.0Β°

19 Example The figure is a pyramid on a square base ABCD. The edges of the base are 30cm long and the height, EH, of the pyramid is 42cm. Find a) the length of AC b) the angle EAH

20 𝑂𝑝𝑝 𝐴𝑑𝑗 tan 𝐴 = 42 21.21 tan 𝐴 = 𝐴= tan βˆ’1 0.1.97 𝐴= 63.2Β°
a) the length of AC Using pythagoras theorem with the base 42cm A D 𝐴𝐢= 30cm 30cm 𝐴𝐢=42.42 30cm B C 30cm b) the angle EAH 𝑂𝑝𝑝 𝐴𝑑𝑗 E tan 𝐴 = Draw the right angled triangle for EAH 42cm tan 𝐴 = 𝐴= tan βˆ’ A 𝐴= 63.2Β° H 21.21cm

21

22

23

24 5. In triangle DEF, Angle F = 90ο‚°, Angle D = 21ο‚° and DF = 3. 2cm
5. In triangle DEF, Angle F = 90ο‚°, Angle D = 21ο‚° and DF = 3.2cm. Find the length of EF

25 6. For the diagram drawn below find the lengths of x and y
15cm 32ο‚° x 20ο‚° y

26

27 8. Find the height of these stairs correct to one decimal place
35ο‚° 3.6m h


Download ppt "Right Angled Trigonometry"

Similar presentations


Ads by Google