Download presentation
Presentation is loading. Please wait.
1
Hiroshi Hirai University of Tokyo hirai@mist.i.u-tokyo.ac.jp
Computing degree of determinant via discrete convex optimization over Euclidean building Hiroshi Hirai University of Tokyo Workshop: Recent Development in Optimization 2 GRIPS, Roppongi, Tokyo, 2018/10/13
2
Contents combinatorial optimization v.s. linear algebra
non-commutative combinatorial optimization v.s. linear algebra Submodularity + Discrete convexity Background: Edmonds problem and recent development Motivation + contribution of this work
3
Edmonds Problem Can we compute the rank of linear symbolic matrix
π΄= π΄ 0 + π΄ 1 π₯ 1 + π΄ 2 π₯ 2 +β¦+ π΄ π π₯ π in polynomial time ? γ π₯ 1 , π₯ 2 ,β¦, π₯ π : variables γ π΄ 0 , π΄ 1 ,β¦, π΄ π : πΓπ matrices over field πγ γπ΄: matrix over π[ π₯ 1 , π₯ 2 ,β¦, π₯ π ] βͺ π( π₯ 1 , π₯ 2 ,β¦, π₯ π )
4
Algebraic Interpretation of Bipartite Matching
Motivation Algebraic Interpretation of Bipartite Matching 1 2 3 4 1 1 π΄= π₯ 12 π₯ π₯ 23 π₯ π₯ π₯ 41 1 2 2 2 3 3 3 4 4 4 = ππβπΈ πΈ ππ π₯ ππ πΊ=(π,π;πΈ) # maximum matching of πΊ =rank π΄ β΅det π΄= π Β± ππ βπ π₯ ππ min-max formula ( KΓΆnig-EgervΓ‘ry ) polynomial time algorithm
5
OpenοΌDeterministic polynomial time rank computation
π΄= π=1 π π π π π π π₯ π Linear matroid intersection π΄= π=1 π (π π π π π β π π π π π ) π₯ π Linear matroid matching β min-max theorem + polynomial time algorithm Edmonds 1970, LovΓ‘sz 1981 OpenοΌDeterministic polynomial time rank computation of general π΄= π΄ 0 + π=1 π π΄ π π₯ π Randomized polynomial time algorithm (LovΓ‘sz 1979) Connection to circuit complexity (Kabanets-Impagliazzo 2004)
6
Edmonds Problem Non-commutative nc-
Ivanyos-Qiao-Subrahmanyam 2015 nc- Can we compute the rank of linear symbolic matrix π΄= π΄ 0 + π΄ 1 π₯ 1 + π΄ 2 π₯ 2 +β¦+ π΄ π π₯ π in polynomial time ? π₯ 1 , π₯ 2 ,β¦, π₯ π : variables π΄ 0 , π΄ 1 ,β¦, π΄ π : matrices over field π π₯ π π₯ π β π₯ π π₯ π rank β€ nc-rank π΄: free ring π π₯ 1 , π₯ 2 ,β¦, π₯ π free skew field π( π₯ 1 , π₯ 2 ,β¦, π₯ π ) βͺ Amitsur 1966
7
What is free skew field π( π₯ 1 , π₯ 2 ,β¦, π₯ π )?
skew field = ring s.t. β nonzero element has inverse π( π₯ 1 , π₯ 2 ,β¦, π₯ π ) := all rational expressions of +,β,Γ,Γ·, π₯ π , πβπ modulo ~ β π= π₯ 2 π₯ 1 π₯ 2 β1 + π₯ 3 β3 β1 π ~ πβπ π 1 , π 2 ,β¦, π π = π π 1 , π 2 ,β¦, π π (βπ, β π π βMa t πΓπ (π) ) It is much difficult to handle elements in π π₯ 1 , π₯ 2 ,β¦, π₯ π than π( π₯ 1 , π₯ 2 ,β¦, π₯ π ), but ...
8
nc-rank in P !! Garg-Gurvits-Oliveira-Wigderson 2015 (FOCSβ16): π=β
Ivanyos-Qiao-Subrahmanyam 2015 (ITCSβ17): π, arbitrary Min-max theorem: Fortin-Reutenauer 2004 treatable in π ! nc-rank π΄=2π β Max. π+π s.t. (βπ) π,π: nonsingular over π β π π π π΄ π π= rank = nc-rank bipartite matching linear matroid intersection rank < nc-rank non-bipartite matching linear matroid matching min-max theorem
9
KΓΆnig-EgervΓ‘ry from Fortin-Reutenauer
πΊ:bipartite graph 2π β Max. π+π π π 1 β π π s.t. π π= (βπ=ππβπΈ) permutation matrices π,π: nonsingular over π =2πβ#maximum stable set =# minimun vertex cover
10
Algorithms for nc-rank
Garg-Gurvits-Oliveira-Wigderson 2015 (FOCSβ16): Gurvitsβ operator scaling Ivanyos-Qiao-Subrahmanyam 2015 (ITCSβ17): Wong sequence --- vector-space analogue of augmenting path Hamada-Hirai 2017: Submodularity + convex optimization on CAT(0)-space They are beyond Euclidean convex optimization
11
Submodularity View Max. π+π s.t. π π΄ π π= π,π: nonsingular
Hamada-Hirai 2017 Max. π+π β β s.t. π π΄ π π= β (βπ) π β π π,π: nonsingular Submodular optimization on the modular lattice of vector subspaces Max. dim π+ dim π s. t. π΄ π π,π =0 π,πβ π π vector subspaces where π΄ π π₯,π¦ β π₯ π π΄ π π¦ βπ =
12
Motivation of this work
~ capture βweightedβ combinatorial optimization problems from such βnon-commutativeβ linear algebra 1 2 3 4 π 12 π 43 Ex: Weighted bipartite matching Max. π π β ππβπ π ππ s.t. π: perfect matching π ππ β β€ + : edge-weight
13
Algebraic Interpretation of Weighted Matching
1 π 12 1 1 2 3 4 π΄(π‘)= π‘ π 12 π₯ π‘ π 21 π₯ π‘ π 14 π₯ π‘ π 23 π₯ π‘ π 32 π₯ 32 π‘ π 41 π₯ π‘ π 43 π₯ 43 π‘ π 44 π₯ 44 1 2 2 2 3 3 3 4 π 43 4 4 = ππβπΈ π‘ π ππ πΈ ππ π₯ ππ Max. weight of perfect matching = deg det π΄(π‘) β΅deg det π΄=deg π Β± π‘ π(π) ππ βπ π₯ ππ = max π π(π)
14
Weighted Edmonds Problem
Can we compute deg det of π΄(π‘)= π΄ 0 (π‘)+ π΄ 1 (π‘) π₯ 1 +β¦+ π΄ π (π‘) π₯ π in polynomial time ? γ π₯ 1 , π₯ 2 ,β¦, π₯ π : variable γ π΄ 0 (π‘), π΄ 1 (π‘),β¦, π΄ π (π‘): matrices over π[π‘] γ γπ΄: matrix over π[ π₯ 1 , π₯ 2 ,β¦, π₯ π ,π‘] Goal: develop a non-commutative version
15
Contribution Formulate weighted non-commutative Edmonds problem
by using DieudonnΓ© determinant Det. Establish a min-max theorem for deg Det γ with view from Discrete Convex Analysis beyond β€ π ο½ L-convex function on Euclidean building Algorithm: SDA γ ο½ π(ππ) nc-rank computation, π: max degree Special case of deg det = deg Det: γ ο½ weighted linear matroid intersection, mixed matrix
16
π΄(π‘)= π΄ 0 (π‘)+ π΄ 1 (π‘) π₯ 1 +β¦+ π΄ π (π‘) π₯ π
How to see π΄(π‘)= π΄ 0 (π‘)+ π΄ 1 (π‘) π₯ 1 +β¦+ π΄ π (π‘) π₯ π Matrix over (skew) polynomial ring π π₯ [t] Ore ring ---- βπ,π,βπ’,π£:ππ’=ππ£ β 0 Matrix over Ore quotient ring π π₯ (t) π π = π β² π β² ββπ’,π£, ππ’= π β² π£,ππ’= π β² π£ β 0 Degree: deg π π β deg πβ deg π
17
π΄ = πΏ π· π π How to define βdeterminantβ of matrices over skew field
π΄: nonsingular over π½ (Our case: π½=π π₯ (t)) Bruhat decomposition: LU-decomposition of matrices over skew field uni-lower-triangular uni-upper-triangular π΄ = πΏ π· π π diagonal permutation unique DieudonnΓ© determinant β Abelization π½ β /[ π½ β , π½ β ] of π½ β Det π΄β sgn π π· 11 π· 22 β¦ π· ππ mod [ π½ β , π½ β ] commutator group Lem: Det π΄π΅= Det π΄ Det π΅
18
Weighted Non-commutative Edmonds Problem
Can we compute deg Det of π΄(π‘)= π΄ 0 (π‘)+ π΄ 1 (π‘) π₯ 1 +β¦+ π΄ π (π‘) π₯ π in polynomial time ? γ π₯ 1 , π₯ 2 ,β¦, π₯ π : variables π₯ π π₯ π β π₯ π π₯ π γ π΄ 0 π‘ , π΄ 1 π‘ ,β¦, π΄ π π‘ : matrices over π[π‘]γ γπ΄: matrix over π( π₯ 1 , π₯ 2 ,β¦, π₯ π )(π‘) β» deg Det is well-defined since deg is zero on commutators deg (ππ π β1 π β1 )=0
19
Min-Max Theorem π΄= π΄ 0 + π΄ 1 π₯ 1 +β¦+ π΄ π π₯ π deg Det π΄=
treatable in π(π‘) π΄= π΄ 0 + π΄ 1 π₯ 1 +β¦+ π΄ π π₯ π deg Det π΄= Min. βdeg det π β deg det Q s.t. deg π π΄ π π ππ β€0 (βπ,βππ) π,π: nonsingular over π(π‘)
20
Weak Duality deg π π΄ π π ππ β€0 (βπ,βππ) βdeg ππ΄π ππ β€0 (βππ)
βdeg Det ππ΄πβ€0 βdeg (Det π Det π΄ Det π)β€0 βdeg Det π + deg Det π΄+deg Det πβ€0 βdeg Det π΄β€β deg Det π β deg Det π = = deg det π deg det π
21
Strong Duality + Algorithm (SDA)
ππ΄π= ππ΄π 0 +π( π‘ β1 ) = π π΄ 0 π π π΄ 1 π 0 π₯ 1 +β¦+ π π΄ π π 0 π₯ π over π( π₯ ) over π ππ΄π 0 : nonsingular on π( π₯ )β deg Det ππ΄π=0 β deg Det π΄=βdeg det πβdeg det π β π,π: optimal ππ΄π 0 : singular on π( π₯ ) β We can augment π,πβ π β² ,πβ² s.t. deg det π β² +deg det π β² >deg det π+deg det π
22
πΌ π π π‘ πΌ π πππ΄ππ πΌ π π π‘ β1 πΌ πβπ β deg π β² π΄ π β² ππ β€0
ππ΄π 0 : singular on π( π₯ ) β nc-rank of ππ΄π 0 <π π‘ β1 β π π βπ,π: nonsingular over π πππ΄ππ= π( π‘ β1 ) π‘ π+π >π πΌ π π π‘ πΌ π πππ΄ππ πΌ π π π‘ β1 πΌ πβπ β deg π β² π΄ π β² ππ β€0 πβ² πβ² deg det π β² +deg det π β² =(π+π βπ)+deg det π+deg det π >0 Long-step: use πΌ π π π‘ πΌ πΌ π , πΌ π π π‘ βπΌ πΌ πβπ , πΌ>0
23
Remarks Essence of this argument / algorithm is
in combinatorial relaxation method (Murota 1990,1995) developed for computing deg det. short-step Naive iteration bound for initial π,π =( π‘ βπ πΌ,πΌ) ππ (π: maximum degree) πβ(deg Det π΄βmax deg (πβ1-minor)) We can improve this bound to = max deg β min deg of Smith-McMillan form of π΄ from view of discrete convex analysis beyond β€ π
24
Special case of deg det = deg Det
π΄= π΄ 0 + π΄ 1 π₯ 1 + π΄ 2 π₯ 2 +β¦+ π΄ π π₯ π Thm [Ivanyos et al 2010] rank π΄ π =1 (βπ β₯1)βΉ rank π΄=nc-rank A. bipartite matching ππβπΈ πΈ ππ π₯ ππ linear matroid intersection π π π π π π π₯ π mixed matrix (Murota-Iri 1985) π΄ 0 + ππβπΈ πΈ ππ π₯ ππ rank π΄ π (π‘)=1 (βπ β₯1)βΉ deg det π΄=deg Det A. π΄(π‘)= π΄ 0 (π‘)+ π΄ 1 (π‘) π₯ 1 +β¦+ π΄ π (π‘) π₯ π Thm [H. 18] mixed polynomial matrix weighted ver.
25
bipartite matching ππβπΈ π‘ π ππ πΈ ππ π₯ ππ
SDA + long-step β Hungarian Interpretation via Euclidean building Linear matroid π π‘ π π π π π π π π₯ π SDA + long-step β Greedy Linear matroid intersection π π‘ π π π π π π π π₯ π ? SDA + long-step β Lawlerβs primal dual Lawler 1975 Mixed polynomial matrix π΄ 0 π‘ + ππβπΈ π‘ π ππ πΈ ππ π₯ ππ SDA + optimization over β€ π -sublattice (apartment) β combinatorial relaxation algo. Iwata-Takamatsu 2013 Iwata-Oki-Takamatsu 2017 dual of bipartite matching
26
= View from Discrete Convex Analysis beyond β€ π Dual of nc-rank
Dual of deg Det Max. π+π Max. deg det π + deg det Q β β s.t. π π΄ π π= β (βπ) s.t. deg π π΄ π π ππ β€0 (βπ,βππ) π β π π,π: nonsingular over π(π‘) π,π: nonsingular over π = L-convex optimization on the modular lattice of free modules over PID π π‘ β Max. dim π+ dim π s. t. π΄ π π,π =0 βπ Submodular optimization on the modular lattice of vector subspaces π,πβ π π vector subspaces where π΄ π π₯,π¦ β π₯ π π΄ π π¦
27
π,π: nonsingular over π(π‘)
Max. deg det π + deg det Q s.t. deg π π΄ π π ππ β€0 (βπ,βππ) π,π: nonsingular over π(π‘) π π‘ β β π π βπ π‘ deg π π β€0} π π π‘ β β· full-rank free π π‘ β -submodule of π π‘ π Max. deg πΏ + deg π s.t. deg π΄ π πΏ,π β[ββ,0] (βπ) πΏ,π: full-rank free π π‘ β -submodules of π π‘ π = where π΄ π π₯,π¦ β π₯ π π΄ π π¦
28
β π π‘ π β{ full-rank free π π‘ β -submodules of π π‘ π }
β Euclidean building of SL(π π‘ π ) Lem: β π π‘ π is a uniform modular lattice, i.e., π₯βΌ π₯ + β π¦ π¦ covers π₯} is order-preserving bijection Rem [H. 17] : uniform modular lattice β Euclidean building of type A
29
Uniform modular lattice [H.17]
π₯βΌ π₯ + β π¦ π¦ covers π₯} is order-preserving bijection Ex: β€ π , β§ = min, β¨ = max, π₯ + =π₯+π π₯ π₯ + Rem: β π π‘ 2 β β€β infinite regular tree Ex: β€β Tree
30
L-convexity on uniform modular lattice
Def [Murota 96] π: β€ π βββͺ{β} is L-convex: π π +π π β₯π πβ§π +π πβ¨π βπΌ,π π+π =π π +πΌ β: uniform modular lattice Def [H. 17] π:ββββͺ{β} is L-convex: π π +π π β₯π πβ§π +π πβ¨π βπΌ,π π + =π π +πΌ Several DCA concepts/properties are naturally extended
31
deg Det π΄= Min. β deg πΏ β deg π s.t. deg π΄ π πΏ,π β[ββ,0] (βπ) πΏ,πβ β π π‘ π is viewed as L-convex function minimization on uniform modular lattice SDA = steepest descent algorithm for this L-convex function: πβΆ π β² : minimizer over [π, π + ] submodular optimization # iterations = π β (initial,opt) adapting Murota-Shioura 2014
32
Summary Edmonds problem, rank v.s. nc-rank
Weighted Edmonds problem, deg det v.s. deg Det formulation, algorithm, special case of deg det = deg Det Submodularity / discrete convexity aspect L-convexity on uniform modular lattice (= Euclidean building)
33
Problems If π΄= π΄ 0 π‘ π 0 + π΄ 1 π‘ π 1 π₯ 1 +β¦+ π΄ π π‘ π π π₯ π
where π΄ π :πΓπ over π, can we compute deg Det A in time polynomial in π,π, and log max π π π ? Representable by deg det but deg det < deg Det : Non-bipartite matching: Edmonds 1965 Matching forest: Giles 1982 Path matching: Cunningham-Geelen 1997 Linear matroid matching: LovΓ‘sz 1980, Iwata-Kobayashi 2017 Can we develop a unified theory ?
34
References H. Hirai: Uniform modular lattice and Euclidean building, 2017 H. Hirai: Uniform semimodular lattice and valuated matroid, 2018 H. Hirai: Computing degree of determinant via discrete convex optimization over Euclidean building, 2018. Thank you for your attention
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.