Presentation is loading. Please wait.

Presentation is loading. Please wait.

Error Correction Code (2)

Similar presentations


Presentation on theme: "Error Correction Code (2)"— Presentation transcript:

1 Error Correction Code (2)
Fire Tom Wada Professor, Information Engineering, Univ. of the Ryukyus 2018/11/27

2 Two major FEC technologies
Reed Solomon code (Block Code) Convolutional code Serially concatenated code Interleaving Reed Solomon Code Convolution Code ConcatenatedCoded Source Information Concatenated Goes to Storage, Transmission 2018/11/27

3 (n, k) Block Code it-2 it-1 it wt-2 wt-1 wt BLOCK k bit Information
n bit wt-1 wt ENCODE Time t information block it is coded to time t code wt. k : information length n : code length Code Rate : R=k/n 2018/11/27

4 Convolutional Code it-2 it-1 it wt-2 wt-1 wt k bit Information code
n bit wt-1 wt Constraint length K Time t code wt is determined by past K information. K : Constraint length Code Rate : R=k/n 2018/11/27

5 Simple Convolutional Coder
 D is delay operator  c1t, c2t depends on not only current it bu also past it-1, it-2 2018/11/27

6 Simple Convolutional Coder(2)
Time t 1 2 3 4 5 it F1=it-1 F2=it-2 c1t c2t If input information is “110010” then Output code is “ ”. Constraint length K=3, R=1/2 2018/11/27

7 State Transition Diagram
Number of State: 4 Time t 1 2 3 4 5 it F1=it-1 F2=it-2 c1t c2t 2018/11/27

8 State Transition Diagram(2)
Time t 1 2 3 4 5 it F1=it-1 F2=it-2 c1t c2t t=0 t=5 t=1 t=3 t=2 In each time t, a traveler stays in one state. And move to different state cycle by cycle. 2018/11/27

9 Trellis Diagram Convert the State transition diagram to 2D diagram
Vertical axis : states Horizontal axis : time states time 00 01 10 11 00/0 11/1 11/0 00/1 01/0 10/1 10/0 01/1 2018/11/27

10 Encoding in Trellis Input information determines a path in Trellis
Time t 1 2 3 4 5 it F1=it-1 F2=it-2 c1t c2t Input information determines a path in Trellis Each Branch outputs 2bit code. t=0 t=1 t=2 t=3 t=4 t=5 00 01 10 11 00/0 11/1 11/0 00/1 01/0 10/1 10/0 01/1 11 11 11 01 10 10 2018/11/27

11 Punctured Convolutional Code
The example Encoder has Code Rate R=1/2 Punctured Convolutional Code means that one or some code output is removed. Then Code Rate can be modified 2018/11/27

12 Merit of Punctured Code
Larger code rate is better. Using Punctured technology, When communication channel condition is good, weak error correction but high code rate can be chosen. When communication channel condition is bud, strong error correction but low code rate can be chosen. This capability can be supported by small circuit change. One coder or decoder can be used for several code rate addaptively 2018/11/27

13 R=2/3 example 2018/11/27

14 Viterbi Decode Viterbi Decode is one method of Maximum likelihood decoding for Convolutional code. Maximum likelihood decoding Likelihood function is P(xi|r): Probability of seding xi under the condition of receiving r N message x1, x2, x3, …, xN x? r Sender take one message and send it out! Receiver find the maximum conditional Probability 2018/11/27

15 Viterbi Decode(2) Branch metric is the Likelihood function of each branch. -Ln{p(xk|ri)} High possibility  small value Example : Hamming distance Path metric is the sum of branch metrics along the possible TRELLIS PATH. 2018/11/27

16 Viterbi Decoding Example
R=1/2, Receive Calculate Each Branch metric (This time Hamming distance) 00 01 10 11 00(2) 11(0) 01(1) 10(1) 00(1) 11(1) 01(0) 10(2) 01(2) 10(0) t=0 t=1 t=2 t=3 t=4 t=5 t=6 Rece- ived 2018/11/27

17 Viterbi Decoding Example(2)
Calculate Path metric in order to find minimum path metric path. Until t=2 Lower path has smaller path metric, Then Take it! t=0 t=1 t=2 t=3 t=4 t=5 t=6 5 3 00 00(2) 00 00(1) 00 00(2) 00 00(1) 00 00(2) 00 00(1) 00 2 11(0) 11(1) 11(0) 11(1) 11(0) 11(1) 3 01 01 11(0) 01 11(1) 01 11(0) 01 11(1) 01 2 00(2) 00(1) 00(2) 00(1) 01(2) 01(1) 01(0) 01(1) 01(0) 10 10 10 10 10 10(0) 10(1) 10(2) 10(1) 10(2) 10(1) 10(2) 10(1) 10(2) 11 11 11 11 11 01(1) 01(0) 01(1) 01(0) 2018/11/27

18 Viterbi Decoding Example(3)
Calculate Path metric in order to find minimum path metric path. Until t=6 t=0 t=1 t=2 t=3 t=4 t=5 t=6 3 2 2 3 3 00 00(2) 00 00(1) 00 00(2) 00 00(1) 00 00(2) 00 00(1) 00 11(0) 11(1) 11(0) 3 11(1) 11(0) 11(1) 3 3 2 2 01 01 11(0) 01 11(1) 01 11(0) 01 11(1) 01 2 00(2) 00(1) 00(2) 00(1) 2 3 01(2) 01(1) 01(0) 01(1) 01(0) 10 10 10 10 10 10(0) 10(1) 1 10(2) 10(1) 10(2) 2 10(1) 10(2) 10(1) 10(2) 11 11 11 11 11 01(1) 01(0) 01(1) 01(0) 1 1 2 2 2018/11/27

19 Viterbi Decoding Example(4)
Select Minimum Path Metric and get original information In this example, two minimum path Upper path : Lower path : If we increase the time, we might find ONLY ONE MINIMUM PATH. 00 01 10 11 00(2) 11(0) 01(1) 10(1) 00(1) 11(1) 01(0) 10(2) 01(2) 10(0) t=0 t=1 t=2 t=3 t=4 t=5 t=6 1 2 1 1 2 2 2018/11/27

20 Received signal has many level
In the previous example, we have assumed the received sequence is Usually, received signal is analog (Many Levels) such as SIGNAL LEVEL 1 2 3 4 5 6 7 2018/11/27

21 Hard Decision HARD DECISION LINE SIGNAL LEVEL 1 2 3 4 5 6 7 Loosing Reliability Information by Hard Decision! HARD DECISION OUTPUTS 1 1 1 1 1 1 1 1 1 Highly reliable 1 Low reliable 1 We have to distinguish! 2018/11/27

22 Soft Decision Use soft decision metric One Example LEVEL 1 2 3 4 5 6 7
1 2 3 4 5 6 7 Branch Metric for ‘0’ Branch Metric for ‘1’ Difference -3 -2 -1 Reliable ‘1’ Reliable ‘0’ 00 00(branch metric = = 3) LEVEL= 65 HOW TO COMPUTE BRANCH METRIC No effect on Viterbi decoding! Looks like Erased or Punctured! 2018/11/27

23 Soft Decision Viterbi Calculate Branch Metric based on Soft-Table
00 01 10 11 00(1) 11(0) 01(1) 10(0) 00(2) 01(0) 10(2) 01(2) 00(3) 00(4) 11(1) 10(4) t=0 t=1 t=2 t=3 t=4 t=5 t=6 65 LEVEL 63 54 36 66 27 LEVEL 1 2 3 4 5 6 7 Branch Metric for ‘0’ Branch Metric for ‘1’ 2018/11/27

24 Soft Decision Viterbi(2)
Calculate Path metric in order to find minimum path metric path. Until t=6 00 01 10 11 00(1) 11(0) 01(1) 10(0) 00(2) 01(0) 10(2) 01(2) 00(3) 00(4) 11(1) 10(4) t=0 t=1 t=2 t=3 t=4 t=5 t=6 65 LEVEL 63 54 36 66 27 3 5 2 3 4 3 3 2 4 2 3 3 1 1 3 3 2018/11/27

25 Soft Decision Viterbi(3)
Select Minimum Path Metric and get original information In this example : 00 01 10 11 00(1) 11(0) 01(1) 10(0) 00(2) 01(0) 10(2) 01(2) 00(3) 00(4) 11(1) 10(4) t=0 t=1 t=2 t=3 t=4 t=5 t=6 65 LEVEL 63 54 36 66 27 2018/11/27

26 Summary 2 types of FEC Viterbi Decoder : Maximum likelihood decoding
Block code such as RS Convolutional Code Code Rate Punctured Viterbi Decoder : Maximum likelihood decoding Trellis Hard Decision vs. Soft Decision Branch Metric, Path Metric 2018/11/27


Download ppt "Error Correction Code (2)"

Similar presentations


Ads by Google