Download presentation
Presentation is loading. Please wait.
1
Corrosion Resistance of P/M S.St.
Richard R. Phillips, Engineered Pressed Materials Dennis Hammond Apex Advanced Technologies, LLC
2
Objective Using 316L, 17-4ph, 409LCb & 434L Achieve higher densities
Higher densities at lower sintering temperatures Obtain good corrosion resistance
3
History Historically difficult to get high density
Compressibility limiting factor Work hardening during pressing High surface oxides on powder Limited oxide reduction in sintering and densification Lower densities interferes with corrosion resistance
4
Water atomized 316L 3200 ppm O2 5200X
5
Gas atomized 316L 150 ppm O2 5200X
6
Powder Preparation 100 mesh standard powders of 316L, 17-4ph, 409LCb & 434L A group with 0.75 % Lithium Stearate A group with an Activation Technology TRS bars pressed at 690 Mpa (50TSI)
7
Activation Technology
Blend Additive/Lubricant Master Batch Hydrostatic distribution of additives & lubricant during compaction Particles are aligned in a best fit arrangement Density gradients eliminated Activation is initiated in the delubing stage and finalized in the early stage of sintering
8
Density Gradient – Shape Retention
EPM
9
Lithium stearate Activation Technology
10
Compressibility g/cm3 at 690 Mpa (50TSI)
Material Li Str Activation 316L 17-4ph 409LCb 434L
11
Processing TRS bars delubed at 400OC (750OF) in Air
Sintering in a H2 box furnace with a slow cool > 1 hr. Sintering in a continuous vacuum furnace with a 2 bar fast N2 quench < 10 min. Sintered at: 1120 (2050), 1177 (2150), 1232 (2250), 1288 (2350), 1343 (2450) & 1388OC (2530OF) Time at temperature 45 min.
12
Atmosphere Box Furnace
13
Continuous Vacuum N2 quench
14
Sintering size change and densification
33
ASTM B895 Standard for Test Method 2
For alloy screening and process optimization
34
D X C B A 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
316L ¢C (¢F) (2050) (2150) 1232 (2250) (2350) (2450) (2530) Li Str ATMO D X C B Activ. ATMO A Li Str VAC Activ. VAC 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
35
C X B A D 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
17-4PH ¢C (¢F) (2050) (2150) 1232 (2250) (2350) (2450) (2530) Li Str ATMO C X B Activ. ATMO A Li Str VAC D Activ. VAC 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
36
D X C A B 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
409Cb ¢C (¢F) (2050) (2150) 1232 (2250) (2350) (2450) (2530) Li Str ATMO D X C Activ. ATMO A Li Str VAC B Activ. VAC 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
37
D X C B 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
434L OC (¢F) (2050) (2150) 1232 (2250) (2350) (2450) (2530) Li Str ATMO D X C Activ. ATMO B Li Str VAC Activ. VAC 0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
38
0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
39
0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
40
0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
41
0%A, <1%B, 1-25%C, >25%D 744 hrs. immersion in 5% NaCl
42
BETTER CORROSION RESISTENCE
Conclusion BETTER CORROSION RESISTENCE Higher density Faster cooling rate Activation Technology Higher density at a lower temperature ` Better response with continuous Vacuum Best corrosion resistance
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.