Presentation is loading. Please wait.

Presentation is loading. Please wait.

Evaluating Limits Analytically with Trig

Similar presentations


Presentation on theme: "Evaluating Limits Analytically with Trig"β€” Presentation transcript:

1 Evaluating Limits Analytically with Trig
Section 1.3A Calculus AP/Dual, Revised Β©2017 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

2 β€œ 𝟎 𝟎 ” Limits AKA: Indeterminate Form
Always begin with direct substitution Completely factor the problem Simplify and/or Cancel by identifying a function π’ˆ that agrees with for all 𝒙 except 𝒙 = 𝒄. Take the limit of π’ˆ Apply algebra rules If necessary, Rationalize the numerator Plug in 𝒙 of the function to get the limit 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

3 Β§1.3A: Properties of Limits with Trigonometry
Example 1 Solve π₯𝐒𝐦 π’™β†’πŸ’ 𝒙 𝟐 βˆ’πŸπŸ” π’™βˆ’πŸ’ What form is this? 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

4 Β§1.3A: Properties of Limits with Trigonometry
Example 1 Solve π₯𝐒𝐦 π’™β†’πŸ’ 𝒙 𝟐 βˆ’πŸπŸ” π’™βˆ’πŸ’ AS 𝒙 APPROACHES 4, 𝒇(𝒙) OR π’š APPROACHES 8. 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

5 Β§1.3A: Properties of Limits with Trigonometry
Example 1 (Calculator) Solve π₯𝐒𝐦 π’™β†’πŸ’ 𝒙 𝟐 βˆ’πŸπŸ” π’™βˆ’πŸ’ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

6 Β§1.3A: Properties of Limits with Trigonometry
Example 2 Solve π₯𝐒𝐦 π’™β†’βˆ’πŸ πŸπ’™ 𝟐 βˆ’π’™βˆ’πŸ‘ 𝒙 𝟐 βˆ’πŸπ’™βˆ’πŸ‘ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

7 Β§1.3A: Properties of Limits with Trigonometry
Example 3 Solve π₯𝐒𝐦 𝒙→𝒂 π’™βˆ’π’‚ 𝒙 πŸ‘ βˆ’ 𝒂 πŸ‘ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

8 Β§1.3A: Properties of Limits with Trigonometry
Your Turn Solve π₯𝐒𝐦 π’•β†’βˆ’πŸ 𝒕 πŸ‘ βˆ’π’• 𝒕 𝟐 βˆ’πŸ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

9 When in Algebra… NO RADICALS IN THE DENOMINATOR
You learned to: NO RADICALS IN THE DENOMINATOR IN LIMITS, NO RADICALS IN THE NUMERATOR and DENOMINATOR 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

10 Β§1.3A: Properties of Limits with Trigonometry
Example 4 Solve π₯𝐒𝐦 π’™β†’πŸ— 𝒙 βˆ’πŸ‘ π’™βˆ’πŸ— What form is this? 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

11 Β§1.3A: Properties of Limits with Trigonometry
Example 4 Solve π₯𝐒𝐦 π’™β†’πŸ— 𝒙 βˆ’πŸ‘ π’™βˆ’πŸ— NO NEED TO FOIL THE BOTTOM 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

12 Β§1.3A: Properties of Limits with Trigonometry
Example 4 Solve π₯𝐒𝐦 π’™β†’πŸ— 𝒙 βˆ’πŸ‘ π’™βˆ’πŸ— 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

13 Β§1.3A: Properties of Limits with Trigonometry
Example 5 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝒙+𝟏 βˆ’πŸ 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

14 Β§1.3A: Properties of Limits with Trigonometry
Your Turn Solve π₯𝐒𝐦 π’™β†’βˆ’πŸ‘ 𝒙+πŸ• βˆ’πŸ 𝒙+πŸ‘ . Hint: Don’t combine like terms to the denominator, too early 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

15 Β§1.3A: Properties of Limits with Trigonometry
Example 6 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝟏 πŸ“+𝒙 βˆ’ 𝟏 πŸ“ 𝒙 What form is this? 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

16 Β§1.3A: Properties of Limits with Trigonometry
Example 6 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝟏 πŸ“+𝒙 βˆ’ 𝟏 πŸ“ 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

17 Β§1.3A: Properties of Limits with Trigonometry
Example 6 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝟏 πŸ“+𝒙 βˆ’ 𝟏 πŸ“ 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

18 Β§1.3A: Properties of Limits with Trigonometry
Example 6 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝟏 πŸ“+𝒙 βˆ’ 𝟏 πŸ“ 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

19 Β§1.3A: Properties of Limits with Trigonometry
Example 7 Evaluate π₯𝐒𝐦 π’™β†’πŸ 𝟏 𝒙+𝟏 βˆ’ 𝟏 𝟐 π’™βˆ’πŸ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

20 Β§1.3A: Properties of Limits with Trigonometry
Your Turn Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝟏 𝒙+πŸ’ βˆ’ 𝟏 πŸ’ 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

21 Β§1.3A: Properties of Limits with Trigonometry
β€œSqueeze Theorem” Also known as the β€œSandwich theorem,” it is used to evaluate the limit of a function that can't be computed at a given point. For a given interval containing pointΒ c, where 𝒇,Β  π’ˆ, and 𝒉 are three functions that are differentiable andΒ π’ˆ 𝒙 <𝒇 𝒙 <𝒉 𝒙 over the interval where 𝒇 𝒙 is the upper bound and 𝒉 𝒙 is the lower bound. 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

22 Β§1.3A: Properties of Limits with Trigonometry
β€œSqueeze Theorem” 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

23 Β§1.3A: Properties of Limits with Trigonometry
Example 8 Use the Squeeze Theorem to evaluate π₯𝐒𝐦 𝒙→𝒄 π’ˆ(𝒙) where 𝒄=𝟏 for πŸ‘π’™β‰€π’ˆ 𝒙 ≀ 𝒙 πŸ‘ +𝟐 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

24 Β§1.3A: Properties of Limits with Trigonometry
Example 8 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

25 Β§1.3A: Properties of Limits with Trigonometry
Example 9 Use the Squeeze Theorem to evaluate π₯𝐒𝐦 π’™β†’πŸ’ 𝒇(𝒙) for πŸ’π’™βˆ’πŸ—β‰€π’‡ 𝒙 ≀ 𝒙 𝟐 βˆ’πŸ’π’™+πŸ• for which 𝒙β‰₯𝟎 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

26 Β§1.3A: Properties of Limits with Trigonometry
Your Turn Use the Squeeze Theorem to evaluate π₯𝐒𝐦 𝒙→𝒄 π’ˆ(𝒙) where 𝒄=𝟎 for πŸ—βˆ’ 𝒙 𝟐 β‰€π’ˆ 𝒙 ≀ πŸ—+𝒙 𝟐 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

27 Special Trigonometric Limits
π₯𝐒𝐦 π’™β†’πŸŽ 𝐬𝐒𝐧 𝒙 𝒙 =𝟏 π₯𝐒𝐦 π’™β†’πŸŽ πŸβˆ’ 𝐜𝐨𝐬 𝒙 𝒙 =𝟎 π₯𝐒𝐦 π’™β†’πŸŽ 𝟏+𝟏/𝒙 𝒙 =𝒆 When expressing 𝒙 in radians and not in degrees 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

28 Why is the Limit of 𝐬𝐒𝐧 𝒙 𝒙 =𝟏 (as x approaches to zero) ?
11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

29 Why is the Limit of πŸβˆ’πœπ¨π¬ 𝒙 𝒙 =𝟎, (as 𝒙 approaches to zero)?
11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

30 Β§1.3A: Properties of Limits with Trigonometry
Example 10 Is there another way of rewriting 𝐭𝐚𝐧 𝒙 ? Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐭𝐚𝐧 𝒙 𝒙 Split the fraction up so we can isolate and utilize a trigonometric limit 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

31 Β§1.3A: Properties of Limits with Trigonometry
Example 10 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐭𝐚𝐧 𝒙 𝒙 Utilize the Product Property of Limits 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

32 Β§1.3A: Properties of Limits with Trigonometry
Example 11 Try to convert it to one of its trig limits. Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐬𝐒𝐧 πŸ’π’™ 𝒙 Try to get it where the sine trig function to cancel. Whatever is applied to the bottom, must be applied to the top. 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

33 Β§1.3A: Properties of Limits with Trigonometry
Example 11 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐬𝐒𝐧 πŸ’π’™ 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

34 Β§1.3A: Properties of Limits with Trigonometry
Example 12 Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐬𝐒𝐧 πŸπ’™ πŸ‘π’™ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

35 Β§1.3A: Properties of Limits with Trigonometry
Your Turn Solve π₯𝐒𝐦 π’™β†’πŸŽ πŸ“π¬π’π§ 𝒙 πŸ‘π’™ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

36 Β§1.3A: Properties of Limits with Trigonometry
Pattern? Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐬𝐒𝐧 πŸ’π’™ 𝒙 =πŸ’ Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐬𝐒𝐧 πŸπ’™ πŸ‘π’™ = 𝟐 πŸ‘ Solve π₯𝐒𝐦 π’™β†’πŸŽ πŸ“π¬π’π§ 𝒙 πŸ‘π’™ = πŸ“ πŸ‘ Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝐬𝐒𝐧 πŸ“π’™ 𝒙 = πŸ“ Solve π₯𝐒𝐦 π’™β†’πŸŽ 𝟐𝐬𝐒𝐧 πŸ‘π’™ πŸ“π’™ = πŸ” πŸ“ 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

37 Β§1.3A: Properties of Limits with Trigonometry
Example 13 Split the fraction up so we can isolate and utilize a trigonometric limit Solve π₯𝐒𝐦 π’™β†’πŸŽ πŸβˆ’ 𝐜𝐨𝐬 𝟐 𝒙 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

38 Β§1.3A: Properties of Limits with Trigonometry
Example 13 Solve π₯𝐒𝐦 π’™β†’πŸŽ πŸβˆ’ 𝐜𝐨𝐬 𝟐 𝒙 𝒙 cos(0) = 1 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

39 Β§1.3A: Properties of Limits with Trigonometry
Your Turn Solve π₯𝐒𝐦 π’™β†’πŸŽ πŸ‘βˆ’πŸ‘ 𝐜𝐨𝐬 𝒙 𝒙 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

40 AP Multiple Choice Practice Question 1 (non-calculator)
If π’‚β‰ πŸŽ, then determine π₯𝐒𝐦 𝒙→𝒂 𝒙 𝟐 βˆ’ 𝒂 𝟐 𝒙 πŸ’ βˆ’ 𝒂 πŸ’ (A) 𝟏 𝒂 𝟐 (B) 𝟏 πŸπ’‚ 𝟐 (C) 𝟏 πŸ”π’‚ 𝟐 (D) 𝟎 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

41 AP Multiple Choice Practice Question 1 (non-calculator)
If π’‚β‰ πŸŽ, then determine π₯𝐒𝐦 𝒙→𝒂 𝒙 𝟐 βˆ’ 𝒂 𝟐 𝒙 πŸ’ βˆ’ 𝒂 πŸ’ Vocabulary Connections and Process Answer and Justifications 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry

42 Β§1.3A: Properties of Limits with Trigonometry
Assignment Page odd, odd, odd, 89 11/27/2018 5:17 PM Β§1.3A: Properties of Limits with Trigonometry


Download ppt "Evaluating Limits Analytically with Trig"

Similar presentations


Ads by Google