Download presentation
Presentation is loading. Please wait.
Published bySiska Tan Modified over 6 years ago
1
Systems of Differential Equations Nonhomogeneous Systems
Math 4B Systems of Differential Equations Nonhomogeneous Systems Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
2
π₯ β² π‘ =π΄ π₯ + π (π‘) π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘
A system of 1st order linear differential equations will have the form π₯ β² π‘ =π΄ π₯ + π (π‘) We have already seen to how to solve the homogeneous case g(t)=0. Now we will find a particular solution to match the nonhomogeneous part. The full solution will be the sum of the homogeneous and particular parts. Since the system is 1st-order, we can use either variation of parameters or an integrating factor to find the particular solution. In some cases undetermined coefficients might also be appropriate, but it is usually cumbersome. After some work, we will find the solution to be: π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ Here X(t) is the fundamental matrix obtained from the solution of the homogeneous case. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
3
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
4
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Eigenvalues Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
5
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Eigenvalues Eigenvectors Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
6
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Fundamental Matrix Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
7
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Fundamental Matrix Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
8
π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ β² π‘ = β1 0 2 2 π₯ π‘ + π‘ 2 π‘+1 Example 1:
Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
9
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = 3 π βπ‘ 0 β2 π βπ‘ π 2π‘ π π‘ 0 2 π β2π‘ 3π β2π‘ β π‘ 2 π‘+1 ππ‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
10
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = 3 π βπ‘ 0 β2 π βπ‘ π 2π‘ π π‘ 0 2 π β2π‘ 3π β2π‘ β π‘ 2 π‘ π‘ 2 π π‘ (2 π‘ 2 +3π‘+3) π β2π‘ ππ‘ Need to integrate these two functions Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
11
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = 3 π βπ‘ 0 β2 π βπ‘ π 2π‘ β ( π‘ 2 β2π‘+2) π π‘ (β π‘ 2 β π‘β ) π β2π‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
12
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = 3 π βπ‘ 0 β2 π βπ‘ π 2π‘ β ( π‘ 2 β2π‘+2) π π‘ (β π‘ 2 β π‘β ) π β2π‘ π₯ π π‘ = π‘ 2 β2π‘+2 β π‘ π‘β 9 4 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
13
π₯ π‘ = 3 π βπ‘ 0 β2 π βπ‘ π 2π‘ β π 1 π 2 + π‘ 2 β2π‘+2 β π‘ 2 + 1 2 π‘β 9 4
Example 1: Find the general solution to the given system. π₯ β² π‘ = β π₯ π‘ + π‘ 2 π‘+1 General Solution Add the homogeneous and particular solutions π₯ π‘ = 3 π βπ‘ 0 β2 π βπ‘ π 2π‘ β π 1 π π‘ 2 β2π‘+2 β π‘ π‘β 9 4 Solution can also be multiplied out and written like this: π₯ π‘ = π 1 π βπ‘ 3 β2 + π 2 π 2π‘ π‘ β1 +π‘ β β 9 4 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
14
π₯ β² π‘ = 0 1 4 0 π₯ π‘ + sinβ‘(3π‘) π‘ Example 2:
Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
15
βπ 1 4 βπ =0β π 2 β4=0βπ=Β±2 π₯ β² π‘ = 0 1 4 0 π₯ π‘ + sinβ‘(3π‘) π‘
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Eigenvalues βπ 1 4 βπ =0β π 2 β4=0βπ=Β±2 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
16
βπ 1 4 βπ =0β π 2 β4=0βπ=Β±2 π₯ β² π‘ = 0 1 4 0 π₯ π‘ + sinβ‘(3π‘) π‘
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Eigenvalues βπ 1 4 βπ =0β π 2 β4=0βπ=Β±2 Eigenvectors π 1 =2β β2 1 4 β2 ββ2 π£ 1 + π£ 2 =0β π£ 1 = 1 2 π 2 =β2β β2 π£ 1 + π£ 2 =0β π£ 2 = 1 β2 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
17
π π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ π₯ β² π‘ = 0 1 4 0 π₯ π‘ + sinβ‘(3π‘) π‘
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Fundamental Matrix π π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
18
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Fundamental Matrix π π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ π β1 (π‘)= 1 β4 β2π β2π‘ βπ β2π‘ β2 π 2π‘ π 2π‘ = π β2π‘ π β2π‘ π 2π‘ β π 2π‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
19
π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ β² π‘ = 0 1 4 0 π₯ π‘ + sinβ‘(3π‘) π‘
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
20
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ π β2π‘ π β2π‘ π 2π‘ β π 2π‘ β sinβ‘(3π‘) π‘ ππ‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
21
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ π β2π‘ π β2π‘ π 2π‘ β π 2π‘ β sinβ‘(3π‘) π‘ π β2π‘ sin 3π‘ π‘π β2π‘ π 2π‘ sin 3π‘ β π‘π 2π‘ ππ‘ Need to integrate these two functions Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
22
π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ β² π‘ = 0 1 4 0 π₯ π‘ + sinβ‘(3π‘) π‘
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ β π β2π‘ (β cos 3π‘ β sin 3π‘ β π‘β ) π 2π‘ (β cos 3π‘ sin 3π‘ π‘β ) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
23
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ β π β2π‘ (β cos 3π‘ β sin 3π‘ β π‘β ) π 2π‘ (β cos 3π‘ sin 3π‘ π‘β ) π₯ π π‘ = β cos 3π‘ β β sin 3π‘ β π‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
24
Example 2: Find the general solution to the given system. π₯ β² π‘ = π₯ π‘ + sinβ‘(3π‘) π‘ General Solution Add the homogeneous and particular solutions π₯ π‘ = π 2π‘ π β2π‘ 2 π 2π‘ β2π β2π‘ β π 1 π β cos 3π‘ β β sin 3π‘ β π‘ Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
25
π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Example 3:
Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
26
2βπ β5 1 β2βπ =0β π 2 +1=0βπ=Β±π π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Eigenvalues 2βπ β5 1 β2βπ =0β π 2 +1=0βπ=Β±π Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
27
2βπ β5 1 β2βπ =0β π 2 +1=0βπ=Β±π π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Eigenvalues 2βπ β5 1 β2βπ =0β π 2 +1=0βπ=Β±π Eigenvectors π=πβ 2βπ β5 1 β2βπ β π£ 1 + (β2βπ)π£ 2 =0β π£ = π Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
28
π₯ (1) = cos π‘ 2 1 β sin π‘ 1 0 = 2 cos π‘ βsinβ‘(π‘) cosβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Two independent real solutions are: π₯ (1) = cos π‘ β sin π‘ = 2 cos π‘ βsinβ‘(π‘) cosβ‘(π‘) π₯ (2) = sin π‘ cos π‘ = 2 sin π‘ +cos(π‘) sinβ‘(π‘) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
29
π₯ (1) = cos π‘ 2 1 β sin π‘ 1 0 = 2 cos π‘ βsinβ‘(π‘) cosβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Two independent real solutions are: π₯ (1) = cos π‘ β sin π‘ = 2 cos π‘ βsinβ‘(π‘) cosβ‘(π‘) π₯ (2) = sin π‘ cos π‘ = 2 sin π‘ +cos(π‘) sinβ‘(π‘) Fundamental Matrix π π‘ = 2 cos π‘ βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) sinβ‘(π‘) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
30
π π‘ = 2 cos π‘ βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) sinβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) π π‘ = 2 cos π‘ βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) sinβ‘(π‘) π β1 π‘ = βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) β2 cos π‘ +sinβ‘(π‘) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
31
π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = 2 cos π‘ βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) sinβ‘(π‘) βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) β2 cos π‘ +sinβ‘(π‘) β 0 cosβ‘(π‘) sin π‘ cos π‘ + πππ 2 (π‘) β2 πππ 2 π‘ + sin π‘ cosβ‘(π‘) ππ‘ Need to integrate these two functions Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
32
π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = 2 cos π‘ βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) sinβ‘(π‘) β π‘ sin 2π‘ β cosβ‘(2π‘) βπ‘β sin 2π‘ β cosβ‘(2π‘) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
33
π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘)
Example 3: Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Particular Solution π₯ π π‘ =π(π‘) π β1 (π‘)β π π‘ ππ‘ π₯ π π‘ = β π‘sin π‘ β sin π‘ cosβ‘(2π‘)β sin t sinβ‘(2π‘)β cos t cosβ‘(2π‘) β π‘cos π‘ cos π‘ sin 2π‘ β cos π‘ cos 2π‘ βπ‘sin π‘ β sin π‘ sin 2π‘ β sin π‘ cosβ‘(2π‘) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
34
π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) Example 3:
Find the general solution to the given system. π₯ β² π‘ = 2 β5 1 β2 π₯ π‘ + 0 cosβ‘(π‘) General Solution Add the homogeneous and particular solutions π₯ π‘ = 2 cos π‘ βsinβ‘(π‘) 2 sin π‘ +cos(π‘) cosβ‘(π‘) sinβ‘(π‘) β π 1 π 2 + β π‘sin π‘ β sin π‘ cosβ‘(2π‘)β sin t sinβ‘(2π‘)β cos t cosβ‘(2π‘) β π‘cos π‘ cos π‘ sin 2π‘ β cos π‘ cos 2π‘ βπ‘sin π‘ β sin π‘ sin 2π‘ β sin π‘ cosβ‘(2π‘) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.