Presentation is loading. Please wait.

Presentation is loading. Please wait.

Systems of Differential Equations Nonhomogeneous Systems

Similar presentations


Presentation on theme: "Systems of Differential Equations Nonhomogeneous Systems"β€” Presentation transcript:

1 Systems of Differential Equations Nonhomogeneous Systems
Math 4B Systems of Differential Equations Nonhomogeneous Systems Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

2 π‘₯ β€² 𝑑 =𝐴 π‘₯ + 𝑔 (𝑑) π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑
A system of 1st order linear differential equations will have the form π‘₯ β€² 𝑑 =𝐴 π‘₯ + 𝑔 (𝑑) We have already seen to how to solve the homogeneous case g(t)=0. Now we will find a particular solution to match the nonhomogeneous part. The full solution will be the sum of the homogeneous and particular parts. Since the system is 1st-order, we can use either variation of parameters or an integrating factor to find the particular solution. In some cases undetermined coefficients might also be appropriate, but it is usually cumbersome. After some work, we will find the solution to be: π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 Here X(t) is the fundamental matrix obtained from the solution of the homogeneous case. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

3 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

4 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Eigenvalues Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

5 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Eigenvalues Eigenvectors Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

6 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Fundamental Matrix Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

7 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Fundamental Matrix Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

8 π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ β€² 𝑑 = βˆ’1 0 2 2 π‘₯ 𝑑 + 𝑑 2 𝑑+1 Example 1:
Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

9 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 3 𝑒 βˆ’π‘‘ 0 βˆ’2 𝑒 βˆ’π‘‘ 𝑒 2𝑑 𝑒 𝑑 0 2 𝑒 βˆ’2𝑑 3𝑒 βˆ’2𝑑 βˆ™ 𝑑 2 𝑑+1 𝑑𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

10 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 3 𝑒 βˆ’π‘‘ 0 βˆ’2 𝑒 βˆ’π‘‘ 𝑒 2𝑑 𝑒 𝑑 0 2 𝑒 βˆ’2𝑑 3𝑒 βˆ’2𝑑 βˆ™ 𝑑 2 𝑑 𝑑 2 𝑒 𝑑 (2 𝑑 2 +3𝑑+3) 𝑒 βˆ’2𝑑 𝑑𝑑 Need to integrate these two functions Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

11 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 3 𝑒 βˆ’π‘‘ 0 βˆ’2 𝑒 βˆ’π‘‘ 𝑒 2𝑑 βˆ™ ( 𝑑 2 βˆ’2𝑑+2) 𝑒 𝑑 (βˆ’ 𝑑 2 βˆ’ π‘‘βˆ’ ) 𝑒 βˆ’2𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

12 Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 3 𝑒 βˆ’π‘‘ 0 βˆ’2 𝑒 βˆ’π‘‘ 𝑒 2𝑑 βˆ™ ( 𝑑 2 βˆ’2𝑑+2) 𝑒 𝑑 (βˆ’ 𝑑 2 βˆ’ π‘‘βˆ’ ) 𝑒 βˆ’2𝑑 π‘₯ 𝑝 𝑑 = 𝑑 2 βˆ’2𝑑+2 βˆ’ 𝑑 π‘‘βˆ’ 9 4 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

13 π‘₯ 𝑑 = 3 𝑒 βˆ’π‘‘ 0 βˆ’2 𝑒 βˆ’π‘‘ 𝑒 2𝑑 βˆ™ 𝑐 1 𝑐 2 + 𝑑 2 βˆ’2𝑑+2 βˆ’ 𝑑 2 + 1 2 π‘‘βˆ’ 9 4
Example 1: Find the general solution to the given system. π‘₯ β€² 𝑑 = βˆ’ π‘₯ 𝑑 + 𝑑 2 𝑑+1 General Solution Add the homogeneous and particular solutions π‘₯ 𝑑 = 3 𝑒 βˆ’π‘‘ 0 βˆ’2 𝑒 βˆ’π‘‘ 𝑒 2𝑑 βˆ™ 𝑐 1 𝑐 𝑑 2 βˆ’2𝑑+2 βˆ’ 𝑑 π‘‘βˆ’ 9 4 Solution can also be multiplied out and written like this: π‘₯ 𝑑 = 𝑐 1 𝑒 βˆ’π‘‘ 3 βˆ’2 + 𝑐 2 𝑒 2𝑑 𝑑 βˆ’1 +𝑑 βˆ’ βˆ’ 9 4 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

14 π‘₯ β€² 𝑑 = 0 1 4 0 π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Example 2:
Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

15 βˆ’π‘Ÿ 1 4 βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 βˆ’4=0β†’π‘Ÿ=Β±2 π‘₯ β€² 𝑑 = 0 1 4 0 π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑
Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Eigenvalues βˆ’π‘Ÿ 1 4 βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 βˆ’4=0β†’π‘Ÿ=Β±2 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

16 βˆ’π‘Ÿ 1 4 βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 βˆ’4=0β†’π‘Ÿ=Β±2 π‘₯ β€² 𝑑 = 0 1 4 0 π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑
Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Eigenvalues βˆ’π‘Ÿ 1 4 βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 βˆ’4=0β†’π‘Ÿ=Β±2 Eigenvectors π‘Ÿ 1 =2β†’ βˆ’2 1 4 βˆ’2 β†’βˆ’2 𝑣 1 + 𝑣 2 =0β†’ 𝑣 1 = 1 2 π‘Ÿ 2 =βˆ’2β†’ β†’2 𝑣 1 + 𝑣 2 =0β†’ 𝑣 2 = 1 βˆ’2 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

17 𝑋 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 π‘₯ β€² 𝑑 = 0 1 4 0 π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑
Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Fundamental Matrix 𝑋 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

18 Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Fundamental Matrix 𝑋 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 𝑋 βˆ’1 (𝑑)= 1 βˆ’4 βˆ’2𝑒 βˆ’2𝑑 βˆ’π‘’ βˆ’2𝑑 βˆ’2 𝑒 2𝑑 𝑒 2𝑑 = 𝑒 βˆ’2𝑑 𝑒 βˆ’2𝑑 𝑒 2𝑑 βˆ’ 𝑒 2𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

19 π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ β€² 𝑑 = 0 1 4 0 π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑
Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

20 Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 𝑒 βˆ’2𝑑 𝑒 βˆ’2𝑑 𝑒 2𝑑 βˆ’ 𝑒 2𝑑 βˆ™ sin⁑(3𝑑) 𝑑 𝑑𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

21 Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 𝑒 βˆ’2𝑑 𝑒 βˆ’2𝑑 𝑒 2𝑑 βˆ’ 𝑒 2𝑑 βˆ™ sin⁑(3𝑑) 𝑑 𝑒 βˆ’2𝑑 sin 3𝑑 𝑑𝑒 βˆ’2𝑑 𝑒 2𝑑 sin 3𝑑 βˆ’ 𝑑𝑒 2𝑑 𝑑𝑑 Need to integrate these two functions Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

22 π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ β€² 𝑑 = 0 1 4 0 π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑
Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 βˆ™ 𝑒 βˆ’2𝑑 (βˆ’ cos 3𝑑 βˆ’ sin 3𝑑 βˆ’ π‘‘βˆ’ ) 𝑒 2𝑑 (βˆ’ cos 3𝑑 sin 3𝑑 π‘‘βˆ’ ) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

23 Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 βˆ™ 𝑒 βˆ’2𝑑 (βˆ’ cos 3𝑑 βˆ’ sin 3𝑑 βˆ’ π‘‘βˆ’ ) 𝑒 2𝑑 (βˆ’ cos 3𝑑 sin 3𝑑 π‘‘βˆ’ ) π‘₯ 𝑝 𝑑 = βˆ’ cos 3𝑑 βˆ’ βˆ’ sin 3𝑑 βˆ’ 𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

24 Example 2: Find the general solution to the given system. π‘₯ β€² 𝑑 = π‘₯ 𝑑 + sin⁑(3𝑑) 𝑑 General Solution Add the homogeneous and particular solutions π‘₯ 𝑑 = 𝑒 2𝑑 𝑒 βˆ’2𝑑 2 𝑒 2𝑑 βˆ’2𝑒 βˆ’2𝑑 βˆ™ 𝑐 1 𝑐 βˆ’ cos 3𝑑 βˆ’ βˆ’ sin 3𝑑 βˆ’ 𝑑 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

25 π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Example 3:
Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

26 2βˆ’π‘Ÿ βˆ’5 1 βˆ’2βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 +1=0β†’π‘Ÿ=±𝑖 π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Eigenvalues 2βˆ’π‘Ÿ βˆ’5 1 βˆ’2βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 +1=0β†’π‘Ÿ=±𝑖 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

27 2βˆ’π‘Ÿ βˆ’5 1 βˆ’2βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 +1=0β†’π‘Ÿ=±𝑖 π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Eigenvalues 2βˆ’π‘Ÿ βˆ’5 1 βˆ’2βˆ’π‘Ÿ =0β†’ π‘Ÿ 2 +1=0β†’π‘Ÿ=±𝑖 Eigenvectors π‘Ÿ=𝑖→ 2βˆ’π‘– βˆ’5 1 βˆ’2βˆ’π‘– β†’ 𝑣 1 + (βˆ’2βˆ’π‘–)𝑣 2 =0β†’ 𝑣 = 𝑖 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

28 π‘₯ (1) = cos 𝑑 2 1 βˆ’ sin 𝑑 1 0 = 2 cos 𝑑 βˆ’sin⁑(𝑑) cos⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Two independent real solutions are: π‘₯ (1) = cos 𝑑 βˆ’ sin 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) cos⁑(𝑑) π‘₯ (2) = sin 𝑑 cos 𝑑 = 2 sin 𝑑 +cos(𝑑) sin⁑(𝑑) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

29 π‘₯ (1) = cos 𝑑 2 1 βˆ’ sin 𝑑 1 0 = 2 cos 𝑑 βˆ’sin⁑(𝑑) cos⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Two independent real solutions are: π‘₯ (1) = cos 𝑑 βˆ’ sin 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) cos⁑(𝑑) π‘₯ (2) = sin 𝑑 cos 𝑑 = 2 sin 𝑑 +cos(𝑑) sin⁑(𝑑) Fundamental Matrix 𝑋 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) sin⁑(𝑑) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

30 𝑋 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) sin⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) 𝑋 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) sin⁑(𝑑) 𝑋 βˆ’1 𝑑 = βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) βˆ’2 cos 𝑑 +sin⁑(𝑑) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

31 π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) sin⁑(𝑑) βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) βˆ’2 cos 𝑑 +sin⁑(𝑑) βˆ™ 0 cos⁑(𝑑) sin 𝑑 cos 𝑑 + π‘π‘œπ‘  2 (𝑑) βˆ’2 π‘π‘œπ‘  2 𝑑 + sin 𝑑 cos⁑(𝑑) 𝑑𝑑 Need to integrate these two functions Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

32 π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) sin⁑(𝑑) βˆ™ 𝑑 sin 2𝑑 βˆ’ cos⁑(2𝑑) βˆ’π‘‘βˆ’ sin 2𝑑 βˆ’ cos⁑(2𝑑) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

33 π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑)
Example 3: Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Particular Solution π‘₯ 𝑝 𝑑 =𝑋(𝑑) 𝑋 βˆ’1 (𝑑)βˆ™ 𝑔 𝑑 𝑑𝑑 π‘₯ 𝑝 𝑑 = βˆ’ 𝑑sin 𝑑 βˆ’ sin 𝑑 cos⁑(2𝑑)βˆ’ sin t sin⁑(2𝑑)βˆ’ cos t cos⁑(2𝑑) βˆ’ 𝑑cos 𝑑 cos 𝑑 sin 2𝑑 βˆ’ cos 𝑑 cos 2𝑑 βˆ’π‘‘sin 𝑑 βˆ’ sin 𝑑 sin 2𝑑 βˆ’ sin 𝑑 cos⁑(2𝑑) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

34 π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) Example 3:
Find the general solution to the given system. π‘₯ β€² 𝑑 = 2 βˆ’5 1 βˆ’2 π‘₯ 𝑑 + 0 cos⁑(𝑑) General Solution Add the homogeneous and particular solutions π‘₯ 𝑑 = 2 cos 𝑑 βˆ’sin⁑(𝑑) 2 sin 𝑑 +cos(𝑑) cos⁑(𝑑) sin⁑(𝑑) βˆ™ 𝑐 1 𝑐 2 + βˆ’ 𝑑sin 𝑑 βˆ’ sin 𝑑 cos⁑(2𝑑)βˆ’ sin t sin⁑(2𝑑)βˆ’ cos t cos⁑(2𝑑) βˆ’ 𝑑cos 𝑑 cos 𝑑 sin 2𝑑 βˆ’ cos 𝑑 cos 2𝑑 βˆ’π‘‘sin 𝑑 βˆ’ sin 𝑑 sin 2𝑑 βˆ’ sin 𝑑 cos⁑(2𝑑) Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB


Download ppt "Systems of Differential Equations Nonhomogeneous Systems"

Similar presentations


Ads by Google