Download presentation
Presentation is loading. Please wait.
Published byVivien Williams Modified over 6 years ago
1
High-performance proton acceleration from a renewable cryogenic hydrogen target
L. Obst, S. Göde, M. Rehwald, F.-E. Brack, J. Branco, S. Bock, M. Bussmann, T. E. Cowan C. B. Curry, F. Fiuza, M. Gauthier, R. Gebhardt, U. Helbig, A. Huebl, U. Hübner, A. Irman, L. Kazak, J. B. Kim, T. Kluge, S. Kraft, M. Loeser, J. , R. Mishra, C. Rödel, H.-P. Schlenvoigt, M. Siebold, J. Tiggesbäumker, S. Wolter, T. Ziegler, U. Schramm, S. H. Glenzer and K. Zeil 3rd European Advanced Accelerator Concepts Workshop La Biodola, Isola d’Elba ard logo M. Rehwald, J. Metzkes, K. Zeil, S. D. Kraft, T. Kluge and U. Schramm
2
Laser-Proton Acceleration at HZDR
Motivation: applicability of laser-driven proton beams foil thickness ~µm electron sheath intense laser pulse ~ 1020 W/cm² ~ 10 – 100 fs pulse length fs – ps ion pulse 1010 – 1013 ions/pulse ~ Hz repetition rate compact proton acceleration in laser-driven plasmas: TV/m field strength MeV ion energies within distance ~10 µm broad proton spectra big solid angle potential applications: radio oncology inertial fusion energy probing of ultra-fast field dynamics Fernández, Nuclear Fusion, 2009 Inertial fusion with proton beams: (Roth, Fernandez) E_ig of entire particle beam ~ 10 kJ, E_particle ~ 13 MeV (for protons), meaning that particle number in beam needs to be ~ 10^16 Borghesi, Physics of Plasmas, 2002 high particle yields ✓ Requirement: high proton beam quality high proton energies ?
3
Laser-Proton Acceleration at HZDR
high particle yields ✓ Requirement: high proton beam quality high proton energies ? Laser development * [*] T. Kluge et al., Physical Review Letters 107 (2011) 19 J on target Draco Ti:Sapphire laser dual-beam: 150TW (3.5J in 30fs on target) PW (30J / 30fs) Diode pumped 150J / 150fs laser Penelope in progress U.Schramm et al, IPAC‘17 Proceedings Talk H.-P. Schlenvoigt
4
Laser-Proton Acceleration at HZDR
high particle yields ✓ Requirement: high proton beam quality high proton energies ? Laser development Target development * [*] T. Kluge et al., Physical Review Letters 107 (2011) 19 J on target Draco Ti:Sapphire laser dual-beam: 150TW (3.5J in 30fs on target) PW (30J / 30fs) Diode pumped 150J / 150fs laser Penelope in progress U.Schramm et al, IPAC‘17 Proceedings Talk H.-P. Schlenvoigt
5
Hydrogen micro-jet source Draco high power ultrashort pulse laser
Cryogenic Hydrogen micro-jet source L. Obst, S. Göde, M. Rehwald, F.-E. Brack, J. Branco, S. Bock, M. Bussmann, T. E. Cowan C. B. Curry, F. Fiuza, M. Gauthier, R. Gebhardt, U. Helbig, A. Huebl, U. Hübner, A. Irman, L. Kazak, J. B. Kim, T. Kluge, S. Kraft, M. Loeser, J. , R. Mishra, C. Rödel, H.-P. Schlenvoigt, M. Siebold, J. Tiggesbäumker, S. Wolter, T. Ziegler, U. Schramm, S. H. Glenzer and K. Zeil Draco high power ultrashort pulse laser (3J beam) S. Göde et al., Phys. Rev. Lett. 118 (2017) L. Obst et al., Sci. Rep. 7 (2017) M. Gauthier et al., APL 111 (2017)
6
Why using a cryogenic Hydrogen jet?
1. Target development for applications (e.g. ion therapy) 3 cm jet source debris-free target (spares expensive optics) pure proton target flow speed ~ 100 m/s → repetition rate > 1 Hz different geometries: cylindrical (2, 5, 10 µm diameter) and planar (2 x 20 µm2) target network Off-Axis Parabola Off-Axis Parabola ~ 50cm ~ 50cm Solenoid 1 Target Target
7
Why using a cryogenic Hydrogen jet?
1. Target development for applications (e.g. ion therapy) 3 cm jet source debris-free target (spares expensive optics) pure proton target flow speed ~ 100 m/s → repetition rate > 1 Hz different geometries: cylindrical (2, 5, 10 µm diameter) and planar (2 x 20 µm2) target network Off-Axis Parabola Off-Axis Parabola study plasma dynamics with optical probing ~ 4cm ~ 4 cm ~ 50cm ~ 50cm Solenoid 1 Target Target 30 µm S. Göde et al, Phys. Rev. Letters (2017)
8
Experimental Setup cryogenic H2 jet two target geometries:
LHe LH2 Vacuum Cryostat 3 cm two target geometries: cylindrical Ø 5µm planar 20µm x 2µm Ti:Sapph Draco 3.1 J in 30 fs @ 1 Hz max. intensity: 6· W/cm²
9
Experimental Setup cryogenic H2 jet proton beam diagnostics:
LHe LH2 Thomson Parabola Spectrometers radiochromic film stacks Vacuum Cryostat 3 cm two target geometries: cylindrical Ø 5µm planar 20µm x 2µm Ti:Sapph Draco 3.1 J in 30 fs @ 1 Hz max. intensity: 6· W/cm²
10
Experiment: proton beam generation
target normal acceleration of a wire-shaped target: Line-out Roth et al, Physical Review Special Topics - Accelerators and Beams, 2002 angle /° angle /° angle /° L. Obst et al., Sci. Rep. 7, (2017)
11
Comparison to PIC simulations
target geometry study with PIConGPU proton emission characteristics: Schema zur erklärung der simulation z.B. erstmal oben links, dann unten links (winkel einmalen), dann geometrien einblenden
12
Comparison to PIC simulations
target geometry study with PIConGPU proton emission characteristics: higher proton beam quality (energies, flux) from planar jet than from cylindrical due to: rear surface shape (more „foil“-like) reduced mass target character
13
Experiment: proton beam generation
tailoring of temporal laser contrast: controlled pre-pulse 6.7 MeV 8.7 MeV 10.3 MeV plasma mirror contrast: isotropic emission plasma mirror contrast with tailored prepulse (50 ps delay): more dose, smooth beam profile and potentially more directed beam
14
Summary debris-free pure proton target renewable controlled pre-pulse
angle /° angle /° angle /°
15
Thank you for your attention!
multiple filamentation of freely propagating 100 TW beam in air
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.