Download presentation
Presentation is loading. Please wait.
Published byNorah Wiggins Modified over 6 years ago
1
Lecture 35 Wave spectrum Fourier series Fourier analysis
Fourier transformation
2
Fourier series Any periodic function can be decomposed into the sum of a set of simple oscillation functions. π π‘ = π 0 + π=1 β [ π π cos πππ‘ + π π sin πππ‘ ] Where π=2π/π, πβ²π πππ π β² π are numerical constants which tell us how much of each component oscillation is present. Eg. cos ππ‘+π = cos π cos ππ‘ + sin π sin ππ‘
3
Square wave π π‘ = 4 sin π π + 4 sin 3π 3π + 4 sin 5π 5π + 4 sin 7π 7π +β¦
5
Sawtooth wave π π‘ =β 2 sin π π + 2 sin 2π 2π β 2 sin 3π 3π + 2 sin 4π 4π +β¦
6
π π‘ = π 0 + π=1 β [ π π cos πππ‘ + π π sin πππ‘ ] For given π(π‘), how can we find out what amount of each harmonic is required?
7
Complete orthonormal set
Sines and cosines form an orthonormal set, for πβ π 0 π sin πππ‘ sin (πππ‘) ππ‘ = 1 π 0 2π sin πππ‘ sin πππ‘ π(ππ‘) =0 0 π sin πππ‘ cos (πππ‘) ππ‘ =0 0 π cos πππ‘ cos (πππ‘) ππ‘ =0 And 0 π sin 2 πππ‘ ππ‘ = 1 π 0 2π sin 2 πππ‘ π(ππ‘) = π 2 0 π cos 2 πππ‘ ππ‘ = π 2
8
π π‘ = π 0 + π=1 β [ π π cos πππ‘ + π π sin πππ‘ ] π 0 = 1 π 0 π π π‘ ππ‘ π π = 2 π 0 π π π‘ cos (πππ‘) ππ‘ π π = 2 π 0 π π π‘ sin (πππ‘) ππ‘
9
Exponential expression of Fourier series
π π‘ = π 0 + π=1 β [ π π cos πππ‘ + π π sin πππ‘ ] π π Β±π π π cos πππ‘ Β±π sin πππ‘ = π π cos πππ‘ + π π sin πππ‘ Β±π π π sinβ‘(πππ‘)βπ π π cosβ‘(πππ‘) π π‘ = π=ββ β π π π ππππ‘ π π = 1 2 π π βπ π π , πππ π>0 π 0 , πππ π=0 1 2 π π +π π π , πππ π<0
10
Complete orthonormal set
0 π π ππππ‘ π βππππ‘ ππ‘ = 0 π π π πβπ ππ‘ ππ‘ = 0, πππ πβ π π, πππ π=π π π‘ = π=ββ β π π π ππππ‘ π π = 1 T 0 π π π‘ π βππππ‘ ππ‘
11
Energy theorem The energy in a wave is proportional to the square of its amplitude. 0 π π 2 π‘ dt= 0 π π 0 + π=1 β π π cos πππ‘ + π π sin πππ‘ ππ‘ =π π π 2 π=1 β ( π π 0 2 ) The total energy in a wave is the sum of the energies in all of the Fourier components.
12
Fourier transform π π‘ = π=ββ β π π π ππππ‘ , π π = 1 T 0 π π π‘ π βππππ‘ ππ‘ If πββ, πβ0 π π‘ = ββ β π π π 2ππππ‘ ππ π π = ββ β π π‘ π β2ππππ‘ ππ‘ c(π) is called the Fourier transform of π(π‘). The Fourier transform expresses a function of time (or signal) in terms of the amplitude (and phase) of each of the frequencies that make it up.
15
Example of noise reduction using FT
Input image Spectrum Band-pass filter Output image
16
Gaussian wave packet Gaussian distribution
π π₯ = 1 π 2π π β π₯βπ π 2 A Gaussian wave packet π π₯,π‘ = ββ β 1 π π 2π π β πβ π π π 2 π π ππ₯βππ‘ ππ
17
Fourier transform of Gaussian is a Gaussian
For simplicity, consider the Fourier transformation of a Gaussian function π π₯ =π΄ π β π₯ 2 2 (Ξπ₯) 2 Centered at π₯=0, with a width βπ₯ π π₯ = ββ β π(π) π πππ₯ ππ π π = ββ β π π₯ π πππ₯ ππ₯ β π β π 2 Ξπ₯ =π β π 2 2 (Ξπ) 2 Gaussian ββ Gaussian
18
Uncertainty principle
In quantum mechanics, the momentum is π=βπ For Gaussian wave packet Ξπ=1/Ξπ₯ Therefore Ξπ=β/Ξπ₯ ππ Ξπ₯Ξπ=β
19
What is the Square Kilometre Array (SKA)
Next Generation radio telescope β compared to best current instruments it is ... ~100 times sensitivity ~ 106 times faster imaging the sky More than 5 square km of collecting area on sizes 3000km E-MERLIN eVLA 27 27m dishes Longest baseline 30km GMRT 30 45m dishes Longest baseline 35 km
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.