Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electroweak Physics at the EIC

Similar presentations


Presentation on theme: "Electroweak Physics at the EIC"— Presentation transcript:

1 Electroweak Physics at the EIC
1. WEAK NC PARITY VIOLATION AND NEW PHYSICS i) APV vs Pol Electron Scattering (ARL) ii) QWEAK(ep), Moller(ee), DIS(eNeX), … 2. Preliminary EIC requirements For Competitive ARL Program ~100fb-1 (K. Kumar et al.; R. Holt) eg 1034cm-2s-1x107s William J. Marciano Oct 21, 2009

2 BNL LDRD FY2010 (Funded) Electroweak Physics with an Electron-Ion Collider Deshpande, Kumar, Marciano, Vogelsang STUDY GOALS DIS & Nuclear Structure Functions (,Z,W) (Beyond HERA)  L(HERA)=1031cm-2s-1  >1033cm-2s-1 ARL, sin2W(Q2), Radiative Corrections, “New Physics” requires roughly 100fb-1(1034cm-2s-1) Lepton Flavor Violation: eg epX requires roughly one inverse attobarn=1000fb-1! To be competitive with BR(eX)~10-10 Rates & Backgrounds Need Thorough Study

3 SOME ISSUES What are the Machine and Detector Requirements?
“New Physics Effects” (Z’, Leptoquarks, SUSY, S&T, LFV…) sin2W(Q2) Running Weak Mixing Angle Inclusion of Electroweak Radiative Corrections (Important?) High Precision & Polarization(0.5%?, 0.25%?) Nucleon vs Nuclear Asymmetries (EMC Effect, CSV?) Proton & Deuteron Polarization (Spin Content-Peff?) Various Issues That Need Thorough Study

4 1) PV Weak Neutral Currents (Past, Present and Future)
The SU(2)LxU(1)Y Weinberg-Salam Model: weak neutral current coupling g/cosWZf(T3f-2Qfsin2W -T3f5)f T3f=1/2, Qf=electric charge A New Form of Parity Violation! -Z Interference  Parity Violation Everywhere! Depends on sin2W

5 Atomic Parity Violation (APV)
QW(Z,N) =Z(1-4sin2W)-N Weak Charge W=Weak Mixing Angle QW(p)=1-4sin2W0.08 QW(209Bi83) = sin2W =-126 Bi Much Larger but Complicated Atomic Physics Originally APV not seen in Bi  SM Ruled Out? (Later seen: Tl, Bi, Cs…) QW(133Cs55)= sin2W =-73.16(34) Recent(2008) Atomic Theory Improvement

6 Confirmed SU(2)LxU(1)Y SM! ±10% Determination of sin2W Precision!
1978 SLAC Polarized DIS eD Asymmetry (Prescott, Hughes…) e+De+X -Z Interference ARL= R-L/R+L2x10-4Q2GeV-2(1-2.5sin2W) ~10-4Expected Exp. Gave ARLexp=1.5x10-4sin2W=0.21(2) Confirmed SU(2)LxU(1)Y SM! ±10% Determination of sin2W Precision!

7 sin2W(mZ)MS=3/8[1-109/18ln(mX/mZ)+…]
Seemed to agree with GUTS (SU(5), SO(10)…) sin2W=3/8 at unification =mX2x1014GeV sin2W(mZ)MS=3/8[1-109/18ln(mX/mZ)+…] 0.21! (Great Desert?) But later, minimal SU(5) ruled out by proton decay exps (pe+)>1033yr mX>5x1015GeV SUSY GUT UnificationmX1016GeV p1035yr For mSUSY(TeV) sin2W(mZ)MS=0.232 (Good Current Agreement!)

8 sin2W needed better than 1% determination
1980s - Age of EW Precision sin2W needed better than 1% determination Renormalization Prescription Required EW Radiative Corrections Computed Finite and Calculable: DIS N, ve, APV (A. Sirlin &WJM) mZ, mW, Z, ALR, AFB Define Renormalized Weak Mixing Angle: sin2WR sin20W=1-(m0W/m0Z)2=(e0/g0)2 Natural Bare Relation sin2W1-(mW/mZ) On Shell Definition, Popular in1980s Induces large (mt/mW)2 corrections Now Largely Abandoned sin2W()MSe2()MS/g2()MS Good for GUT running No Large RC Induced Theoretically Nice/ But Unphysical

9 sin2Wlep = Z coupling at the Z pole
very popular at LEP = sin2W(mZ)MS (best feature) sin2W(Q2) = Physical Running Angle Continuous Incorporates Z mixing loops: quarks, leptons, W Precision measurements at the Z Pole (e+e-Zff) Best Determinations sin2W(mZ)MS = (26) ALR(1-4sin2W) (SLAC) sin2W(mZ)MS = (29) AFB(bb) (CERN) (3 sigma difference!) World Average: sin2W(mZ)MS= (16) IS IT CORRECT?

10 + mW=80.398(25)GeVsin2W(mZ)MS = 0.23104(15)
-1= , G= x10-5Gev-2, mZ= GeV + mW=80.398(25)GeVsin2W(mZ)MS = (15) Implications: 114GeV<mHiggs<150GeV. New Physics Constraints From: mW, sin2W, ,& G S=ND/6 (ND=# of heavy new doublets, eg 4th generationND=4) mW*= Kaluza-Klein Mass (Extra Dimensions) GG( S+O(1)(mW/mW*)2+…) sin2W(mZ)MS S ND&mW* Average (16) (11) (2), mW*3TeV ALR (26) (15) (SUSY) AFB(bb) (29) (17) 9(3)! Heavy Higgs, mW*~1-2TeV Very Different Interpretations. We failed to nail sin2W(mZ)MS!

11

12 What about low energy measurements?
DIS  Scattering: R(NX)/(NX) Loop Effects  mt heavy! (Currently 173GeV) Early sin2W(mZ)MS=0.233SUSY GUTS NuTeV sin2W(mZ)MS=0.236(2) High? Nuclear-Charge Symmetry Violation? Radiative Corrections? Other?

13 Atomic Parity Violation Strikes Back
1990 QW(Cs)exp=-71.04(1.38)(0.88) C. Wieman et al. Electroweak RCQW(Cs)SM=PV( PV(0)sin2W(mZ)MS) =-73.19(3) 1999 QW(Cs)exp=-72.06(28)(34) Better Atomic Th. 2008 QW(Cs)exp=-72.69(28)(39)sin2W(mZ)MS=0.2290(22) 2009 QW(Cs)exp=-73.16(28)(20)sin2W(mZ)MS=0.2312(16)! 0.5%  Major Constraint On “New Physics” QW(Cs)=QW(Cs)SM( S-0.9(mZ/mZ)2+…) eg S=0.00.4 mZ>1.2TeV, leptoquarks, Anapole Moment …

14 Radiative Corrections to APV (eN Interaction)
QW(Z,N)= PV(-N+Z(1-4PVsin2W(mZ)MS) PV=1-/2(1/s2+4(1-4s2)(ln(mZ/M)2+3/2)+….)0.99 PV(0)=1-/2s2((9-8s2)/8s2+(9/4-4s2)(1-4s2)(ln(mZ/M)2+3/2) -2/3(T3fQf-2s2Qf2)ln(mZ/mf)2+…)1.003 s2sin2W(mZ)MS= , M=Hadronic Mass Scale Radiative Corrections to APV small & insensitive to hadronic unc. Same Corrections Apply to elastic eN scattering as Q20, Ee<<mN

15 E158 at SLAC Pol eeee Moller) Ee50GeV on fixed target, Q2=0.02GeV2
ALR(ee)=-131(14)(10)x10-9  (1-4sin2W) EW Radiative Corrections -50%! (Czarnecki &WJM) Measured to 12% sin2W to 0.6% sin2W(mZ)MS=0.2329(13) slightly high Best Low Q2 Determination of sin2W APV(Cs) & E158 sin2W(Q2) running ALR(ee)exp=ALR(ee)SM(1+0.24T-0.33S+7(mZ/mZ)2…) Constrains “New Physics” eq mZ>0.6TeV, H--,S, Anapole Moment, …

16

17 Goals of Future Experiments
High Precision: sin2W or better Low Q2 Sensitivity to “New Physics” mZ’ >1TeV, S< , SUSY Loops, Extra Dim., Compositeness….

18 Future Efforts QWEAK exp at JLAB being prepared
Will measure forward ALR(epep)  (1-4sin2W)=QW(p) E=1.1GeV, Q20.03GeV2, Pol=0.801%ARL(ep)3x10-7 small ARL requires long running Goal sin2W(mZ)MS= via 4% measurement of ALR Will be best low energy measurement of sin2W ALR(ep)exp=ALR(ep)SM(1+4(mZ/mZ)2+…) eg mz~0.9TeV Sensitivity (Not as good as APV) The Gorchtein - Horowitz Problem (PRL) Z box diagrams: O(2Ee/mp) 6% of QW(p)! RC Estimate needs to be checked Proposed Qweak Theory Uncertainty < 2%? JLAB Flagship Experiment

19 ALR(eeee) to 2.5% Future Efforts: Polarized Moller at JLAB
After 12GeV Upgrade ALR(eeee) to 2.5% sin2W(mZ)MS= ! Comparable to Z pole studies! ALR(ee)exp=ALR(ee)SM(1+7(mZ/mZ)2+…) Explores mZ1.5TeV Better than APV, S0.08 etc. Future JLAB Flagship Experiment (difficult!) Complementary to LHC Discoveries

20 Comparison of QW(p) & QW(Cs)
HPV=G/2[(C1uuu+C1ddd)e5e+ (C2uu5u+C2dd5d)ee+…] QW(p)=2(2C1u+C1d) QW(Cs)=2(188C1u+211C1d) What about the C2q?

21 What About C2u and C2d? Renormalized at low Q2 by Strong Interactions
Measure in Deep-Inelastic Scattering (DIS), eD & ep ARL(eDeX)2x10-4GeV-2Q2[(C1u-C1d/2)+f(y)(C2u-C2d/2)] f(y)=[1-(1-y)2]/[1+(1-y)2] Standard Model: C1u= (1-8sin2W/3)/2  0.20 C1d=-(1-4/sin2W/3)/2 -0.32 C2u= (1-4sin2W)/2 0.04 C2d =-(1-4sin2W)/2-0.04 C2q sensitive to RC & “New Physics” eg Z (SO(10)) Measure ARL to 0.25%? Measure C2q to 1-2%? Theory (loops)?

22 JLAB 6 GeV DIS eDeX On the books
JLAB 12 GeV DIS eD Proposed (Likely) Goals: Measure C2qs, “New Physics”, Charge Sym. Violation … Effective Luminosity (Fixed Target) 1038cm-2sec-1! What can ep and eD at e-Ion contribute? Asymmetry F.O,M,A2N, AQ2, N1/Q2 (acceptance?) High Q2 Better (but Collider Luminosity?) K. Kumar Talk 100fb-1 Needed Program can be started with lower luminosity Do DIS ep, eD, eN at factor of 10 lower

23 Single and Double Polarization Asymmetries
Polarized e: AeRL=(RR+RL-LR-LL)/(RR+RL+LR+LL)Pe Polarized p: ApRL=(RR+LR-RL-LL)/(RR+LR+RL+LL)Pp Polarized D: Pu=Pd=PD Use to determine quark polarizations Polarized e&p or D AepRRLL= (RR-LL)/(RR+LL)Peff Peff=(Pe+Pp)/(1+PePp) like relativistic velocities addition1 eg Pe=0.85, Pp=0.70 Peff=0.972! uncertainty: Peff/Peff=0.17Pe/Pe+0.08Pp/Pp small If we determine (see above) Pp=0.700.014 Peff=0.972 Superb! How to best utilize Peff?

24 Use polarized e & polarized p or D at EICARR,LLto 0.25%
Preliminary Comments Use polarized e & polarized p or D at EICARR,LLto 0.25% Systematics? Peff determined to  % via ApRL & ADRL (possible?) Other? ADRR,LL(1-3.2sin2W) sin2W/sin2W=-0.4ADRR.LL/ADRR.LL 0.25% measurement of ADRR.LLsin2W= Sensitive to “New Physics” eg S=0.05 Summary: Measure DIS RR, RL, LR, LL Determine: Pquarks, Peff. sin2W precisely

25 LDRD ARL GOALS Elucidate Physics Case
Examine Machine and Detector Requirements For 0.1% sin2W Determination Include Full EW Radiative Corrections to DIS Is 100fb-1 Sufficient? Doable? Utility of Proton (Deuteron) Polarization? Precision sin2W Stage 1 e-Ion Goals? Study Pol. Quark dist. & Nuclear Effects (EMC, CSV) Important Secondary EIC Goal? Expands Proposal?


Download ppt "Electroweak Physics at the EIC"

Similar presentations


Ads by Google