Presentation is loading. Please wait.

Presentation is loading. Please wait.

Experimental review of CKM sides at B factories

Similar presentations


Presentation on theme: "Experimental review of CKM sides at B factories"— Presentation transcript:

1 Experimental review of CKM sides at B factories
A. Oyanguren (IFIC, UV-CSIC) (BaBar Collaboration) DISCRETE 2008 Vtd Vub Vcb

2 Introduction & outline
The Cabibbo-Kobayashi-Maskawa matrix: Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb VCKM = VudVub* + VcdVcb* + VtdVtb* = 0  From Bd and Bs mixing hadron colliders (md/ ms)]  From exclusive sl decays: |Vcb|: BD*l, BDl; |Vub|: Bl, Bl B(‘)l, Bl… A ~|Vtd/Vts|  From radiative decays (bd/bs)  From inclusive BXcl (|Vcb|) and BXul (|Vub|) decays ~|Vub/Vcb| (1,0) (0,0) 1 DISCRETE 2008 A. Oyanguren 2

3 B-Factories  1200 fb-1 recorded ! Analysis techniques: B0 B0 B0 - D0
Hadronic or Semileptonic Tag Untagged (High efficiency) (High purity) + D0 - lepton X B0 + - D0 K+ lepton X B0 Signal side Signal side lepton X B0 D* (4S) (4S) (4S) Tag side Tag side DISCRETE 2008 A. Oyanguren 3

4 |Vcb| from exclusive sl decays
From B  D   (BR ~2% , suppressed at high q2) From B  D*   (BR ~ 5%) Vcb q2 Kinematic function Form factor (shape & normalization) Theory: B  D D2 G(1)*=1.074   0.016 B  D* D*2, R1(1) , R2(1) F(1)*=0.921   0.020 Measuring the decay rate and ff shape  |Vcb| * M.Okamoto et al NPPS 140, 461(2005)) * C. Bernard et al arXiv: [hep-lat] DISCRETE 2008 A. Oyanguren 4

5 |Vcb| from BD Select the lepton,
reconstruct the D0 into several channels  Reconstruct the other B into hadrons (Btag)  Reconstruct the missing mass: m2miss = (p(4s) – pBtag-pD-pl)2 m2miss = 0.04 GeV2  Fit the signal yield into 10 w bins (ML fit) 417fb-1 2 = 1.20 0.09  0.04  2 fit to extract D2 and G(1)|Vcb| G(1) |Vcb| = (43.0 1.9  0.4) 10-3 B (B0D+-)= (2.170.06 0.07)% arXiv: DISCRETE 2008 A. Oyanguren 5

6 |Vcb| from BD* Reconstruct the semileptonic decay
D0K, K3 + soft  (to make D*) + lepton The decay rate depends on w, , V ,  Constraint pB  pinclusive = pall –D*  Define the angle between the B and the D* candidate  4D 2 fit to extract D*2, R1, R2 and F(1)|Vcb| w = 0.025 cosv= 0.052  Fit the signal yield 140 fb-1 = 6.47 cos =0.047 preliminary F(1) |Vcb| = (34.4 0.2  1.0) 10-3 R1= 1.495  0.062 2 = 1.293  0.029 R2= 0.844  0.019 B (B0D*+-) = (4.420.03 0.25)% DISCRETE 2008

7 Global fit to BD and BD*
207fb-1 Reconstruct D0 and D+ candidates (D0K-+, D+K-++) B(B-D*0-)= (5.370.02 0.21)% D*2 = 1.21 0.02  0.07 Use p*, p*D and cosB-D to separate BD and BD* decays F(1) |Vcb| = (35.7 0.2  1.2) 10-3 B (B-D0-)= (2.360.03 0.12)% 3D 2 fit to the yields to extract the form factor slopes, D and D* and BD and BD* BRs (R1 and R2 fixed). D2 = 1.22 0.04  0.07 G1) |Vcb| = (43.8 0.8  2.3) 10-3 D preliminary D* 1.5 2 1 1.5 2 -2 -1 1 arXiv: DISCRETE 2008 A. Oyanguren 7

8 |Vcb| from exclusive sl decays
G(1)|Vcb| = (42.4  1.56) x 10-3 2/dof =1.2/8 using G(1) =1.074  0.024 |Vcb| = (39.5  1.5exp  0.9latt ) x 10-3 Exp: - waiting Belle update - systematics  tracking eff, radiative corrections, D** F(1)|Vcb| = (35.41  0.52) x 10-3 2/dof =39/21 using F(1) =0.921  0.024 |Vcb| = (38.4  0.6exp  0.9latt) x 10-3 - systematics  tracking eff, D** 8

9 BD**l ?  Fully reconstructed analyses HQET 605 fb-1 D* D** D
PRD77,091503(2008) 605 fb-1 D* ? D** D Ground states Broad states Narrow states B(BXc) > (BD) + (BD*) + (BD**) [10.1  0.4]% > [2.17  0.12]% + [5.16  0.11]% + [1-2]% B0D*0+- B-D*+-- 417 fb-1 B-D+-- B0D0+-  Belle does not see the D1’, BaBar does. arXiv: Theory predicts B (D1*,D2*) >> B(D*0,D1’), Experiments see B (D1*,D2*) <~ B(D0*,D1’) 9

10 |Vcb| from inclusive sl decays
Operator Product Expansion (OPE): = x Vcb f(parameters related with b quark properties inside the hadron)  kinetic energy, spin... Some inclusive observables  O  depend on the same parameters BXc (For instance: : the lepton energy, the mass distribution, BXs : the photon spectrum) Measurement of moments: DISCRETE 2008 A. Oyanguren 10

11 MXc and El moments One B fully reconstructed into hadrons (Btag)
One lepton from the other B (signal) Rest of particles  measure mx  measure E (electrons) Event by event calibration Unfolded with SVD algorithm < Mxn> measured as function of p*l cut (from 0.8 to 1.9 GeV/c) < Een> measured as function of p*e cut (from 0.4 to 2. GeV/c) PRD 75, (2007) 210fb-1 140fb-1 e+ arXiv: < Mxn> for n=1,2,3,4,5,6 < Een> for n=0,1,2,3,4 DISCRETE 2008 A. Oyanguren 11

12 E moments All measurements: g W+ b t S
Select high energy photons (E*> 1.4 GeV) Off-peak subtraction, veto to photons from 0 and  All measurements: Unfolded with SVD algorithm < En> measured as function of E cut (from 1.7 to 2.1 GeV) 605fb-1 < En> for n=1,2 PRD 78, (2008) DISCRETE 2008 A. Oyanguren 12

13 |Vcb| from inclusive sl decays
 Using 27 moments from BaBar, 25 moments from Belle and 12 moments from other experiments ( |Vcb| =(41.67  0.43fit  0.08 B  0.58th) x 10-3 mb =(4.601  0.034) GeV 2 =(0.440  0.040) GeV2 (Exclusive (BD*): |Vcb| = (38.4  0.6exp  0.9latt) x 10-3  |Vcb|incl - |Vcb|excl : 2.5 DISCRETE 2008 A. Oyanguren 13

14 |Vub| from exclusive sl decays
Analysis methods:  Untagged (high stat., most precise)  Tagged (hadron or semileptonic) (BR ~ 0.01% + large b c bkg) p, h, h’, r, w Untagged B  reconstruction from full event (p = pbeams - pi)  Fit E = EB – s /2 and mES = s/4-|p*B|2 to extract the signal yield 206fb-1 q2= (pB - p )2 in 12 bins  Form factor fit B (B0-)= (1.460.07 0.08)x10-4 PRL 98, (2007) DISCRETE 2008 14

15 |Vub| from exclusive sl decays
pB Tagged B (sl tag) B (hadronic tag) pD(*)l pl  Reconstruct one B into hadrons (Btag) Select the lepton from the other B One B decaying into B D(*) (Btag) select the  ( rec.  or  into pions) Other lepton (-q) from the other B  Reconstruct the missing mass: m2miss = (p(4s) – pBtag-p-pl)2 Define the systems Y=D(*) and X= Fit to cos2B in 3 q2 bins Extract yields in 3 q2 bins 348fb-1 B0- B+0 605fb-1 signal signal [hep-ex] B (B0-)= (1.120.18 0.05)x10-4 B (B0-)= (1.540.17 0.09)x10-4 B (B++)= (0.660.12 0.03)x10-4 DISCRETE 2008 A. Oyanguren 15

16 |Vub| from exclusive sl decays
Form factor necessary to extract |Vub| theory Models depend on q2 region: (Untagged analysis can measure the form factor from data) B (B0-)= (1.340.06 0.05)x10-4 PRL 98, (2007) DISCRETE 2008 A. Oyanguren 16

17 |Vub| from exclusive sl decays
 Check theoretical calculations  Composition of BXu 348fb-1 605fb-1 signal hadron tag sl tag: [hep-ex] 347fb-1 B (B0-)= (2.800.18 0.16)x10-4 untagged [hep-ex] DISCRETE 2008 A. Oyanguren 17

18 |Vub| from inclusive sl decays
: BX = BXc + BXu  Theory needs low momentum cuts to extract|Vub| (OPE breaks down in the Shape Function (SF) region: low mx2 and q2)  OPE parameteres (mb, 2 ) from moments in BXc and BXs  Experiments need high momentum cuts to suppress b  c bkg Experimental technique: Measure partial BR  Tagged (sl or hadronic) or untagged  Use kinematic variables to suppress as much as possible b  c (keeping reliable theoretical calculations): El, q2, mX and P+ = EX -|pX| DISCRETE 2008 A. Oyanguren 18

19 Untagged: endpoint method
Tagged (hadrons or sl) Select regions below charm threshold Key: bkg subtraction (off-peak data, endpoint, MC… )  bc bkg constrained by data in the low energy region One B fully reconstructed Access to all kinematics (mx, q2, P+) for the signal side 81fb-1 signal signal PR73:012006,2006. signal 27fb-1 bc (MC) 347fb-1 bkg bkg 1.55 GeV ~40-60% acceptance 0.66 GeV signal 8 GeV2 arXiv: PRB601:28(2005) 81fb-1 signal 604fb-1 bkg Shmax=f(E, q2) = maximum mx squared (new Belle multivariate analysis  no hard cuts, 90% PS) PRL95:111801(2005)

20 |Vub| from inclusive sl decays
Tagged (hadrons or sl) Relating the rate to bs to reduce model dependence (LLR method)  Moments of the full mass spectrum  OPE fit to extract mb, 2 and . unfolded 220fb-1 80fb-1 B  Xc B  Xs  B  Xu mx cut =1.67 mb =(4.604  0.250) GeV arXiv: 2 =(0.398  0.240) GeV2 PRL96:221801(2006) mx cut (GeV/c2) 20 20

21 |Vub| from inclusive sl decays
OPE based + SF ‣BLNP: HQE with systematic introduction of SF PRD71: (2005) ‣BLL: phase space in mx-q2 with reduced SF PRD64: (2001) ‣GGOU: kinetic scheme JHEP 10(2007) 058 ‣LNP (LLR): b→s directly related to b→ uν JHEP 0510:084 ( PLB 486:86 ) No SF introduced (model non-perturbative QCD) ‣DGE: Dressed Gluon Exponentiation JHEP 0601:097 (2006) ‣ADFR: Analytic coupling PRD74:03400(4,5,6) (2006) Vub incl Vub excl More data, more SP + improvements from theory needed |Vub|from =(3.44  0.16)10-3 DISCRETE 2008 A. Oyanguren 21

22 |Vtd/Vts| from radiative decays
B-  - , / K* b u,c,t u d/s Exclusive Inclusive (Sum of all channels) Form factors arXiv: Select high energy photons veto to photons from 0 and  B → Xsg B → Xdg remove bkg from continuum  Yield from E = EB – s /2 and mES = s/4-|p*B|2 0.6 < MXd/s < 1.0 GeV Need SuperB! 22 PRL101:111801,2008 DISCRETE 2008

23 (Vtd/Vts)/(Vtd/Vts)
Summary The CKM matrix:  decays  Decays (0+0+) Vud/Vud ~ 0.03% Vus/Vus ~ 0.4% Vub/Vub ~ 8% Vcd/Vcd ~ 5% Vcs/Vcs ~ 11% Vcb/Vcb ~ 2% Need theory improvements (excl . vs incl. ??) (Vtd/Vts)/(Vtd/Vts) ~ 3% Vtb/Vtb ~ 15% charm sl decays DISCRETE 2008 A. Oyanguren 23

24 Backup HFAG DISCRETE 2008 A. Oyanguren 24

25 Backup HFAG DISCRETE 2008 A. Oyanguren 25


Download ppt "Experimental review of CKM sides at B factories"

Similar presentations


Ads by Google