Download presentation
Presentation is loading. Please wait.
Published byRebecca Thomas Modified over 6 years ago
1
Transformations in 3 Dimensions CS-321 11/28/2018 Dr. Mark L. Hornick
2
Pure translation CS-321 11/28/2018 Dr. Mark L. Hornick
3
3-D Rotation About an Axis
CS-321 11/28/2018 3-D Rotation About an Axis y x z Positive rotation is counterclockwise, when looking from positive direction along an axis. CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
4
Rotation About z-Axis Note similarity with the 2-D case CS-321
11/28/2018 Rotation About z-Axis Note similarity with the 2-D case CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
5
Rotation About x-Axis CS-321 11/28/2018 Dr. Mark L. Hornick
6
CS-321 11/28/2018 Rotation About y-Axis Note transposition of the +/- on the sin() terms w.r.t. rotation about z and x CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
7
CS-321 11/28/2018 Compound 3-D Rotations Arbitrary orientations can be expressed as a result of successive rotations about each axis Z Y X The same orientation can also be expressed as a result of successive rotations about other axes X Y Z Z Y Z And 15 others… CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
8
CS-321 11/28/2018 Compound rotation Any arbitrary orientation can be represented with a given set of angles. CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
9
CS-321 Dr. Mark L. Hornick
10
Direction cosines CS-321 11/28/2018 Dr. Mark L. Hornick
11
Inverse rotation CS-321 11/28/2018 Dr. Mark L. Hornick
12
Inverse rotation CS-321 11/28/2018 Dr. Mark L. Hornick
13
General Transformation
CS-321 11/28/2018 General Transformation CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
14
General Inverse Transformation
CS-321 11/28/2018 General Inverse Transformation CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
15
Scaling Matrix in 3 dimensions
CS-321 11/28/2018 Scaling Matrix in 3 dimensions Note: Usually Sx = Sy =Sz CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.