Download presentation
Presentation is loading. Please wait.
1
CSCI B609: βFoundations of Data Scienceβ
Lecture 5: Dimension Reduction, Separating and Fitting Gaussians Slides at Grigory Yaroslavtsev
2
Gaussian Annulus Theorem
Gaussian in π
dimensions ( π π
( 0 π
, 1)): Pr π=( π§ 1 ,β¦, π§ π
) = 2π β π
2 π β π§ π§ 2 2 +β¦+ π§ π
2 2 Nearly all mass in annulus of radius π
and width π(1): Thm. For any π·β€ π
all but 3 π βπ π· 2 probability mass satisfies π
βπ·β€ π π β€ π
+π· for constant π
3
Nearest Neighbors and Random Projections
Given a database π¨ of π points in β π
Preprocess π¨ into a small data structure π« Should answer following queries fast: Given πβ β π
find closest πβπ¨: πππππ π π₯βπ¨ πβπ 2 Project each πβπ¨ onto π(π), where π: β π
β β π Pick π vectors π 1 ,β¦, π π i.i.d: π π βΌ π π
0 π
,1 π π =(β© π 1 ,πβͺ,β¦, β©π π ,πβͺ) Will show that w.h.p. π π 2 β π π 2 Return: πππππ π π₯βπ΄ π π βπ π 2 =πππππ π π₯βπ΄ π πβπ 2 β π πππππ π π₯βπ΄ πβπ 2
4
Random Projection Theorem
Pick π vectors π 1 ,β¦, π π i.i.d: π π βΌ π π
0 π
,1 π π =(β© π 1 ,πβͺ,β¦, β©π π ,πβͺ) Will show that w.h.p. π π 2 β π π 2 Thm. Fix πβ β π
then βπ>0: for πβ 0,1 : Pr π π βΌ π π
0 π
, π π 2 β π π 2 β₯π π π 2 β€3 π βππ π 2 Scaling: π π =1 Key fact: π π ,π = π=1 π
π ππ π π ~π 0, π β =π 0,1 Apply βGaussian Annulus Theoremβ with π=π
5
Nearest Neighbors and Random Projections
Thm. Fix πβ β π
then βπ>0: for πβ 0,1 : Pr π π βΌ π π
0 π
, π π 2 β π π 2 β₯π π π 2 β€3 π βππ π 2 Return: πππππ π π₯βπ΄ π π βπ π 2 β π πππππ π π₯βπ΄ πβπ 2 Fix and let π= πβ π π for π π βπ¨ and let π=π πΈlog π π 2 1Β±π π πβ π π π β π π βπ π π (prob. 1β π βπΎ ) Union bound: For fixed π distances to π¨ preserved with prob. 1β π βπΎ+1
6
Separating Gaussians One-dimensional mixture of Gaussians:
π π₯ = π€ 1 π 1 π₯ + π€ 2 π 2 π₯ E.g. modeling heights of men/women Parameter estimation problem: Given samples from a mixture of Gaussians Q: Estimate means and (co)-variances Sample origin problem: Given samples from well-separated Gaussians Q: Did they come from the same Gaussian?
7
Separating Gaussians Gaussian in π
dimensions ( π π
( 0 π
, 1)):
Pr π=( π§ 1 ,β¦, π§ π
) = 2π β π
2 π β π§ π§ 2 2 +β¦+ π§ π
2 2 Nearly all mass in annulus of radius π
and width π(1) Almost all mass in a slab π βπβ€ π₯ 1 β€π} for π=π(1) Pick π ~Gaussian and rotate coordinates to make it π₯ 1 Pick πβΌGaussian, w.h.p. projection of π on π is β[βπ,π] π βπ 2 β π π 2 2
8
Separating Gaussians In coordinates: π=( π
Β±π 1 , 0,0,β¦, 0)
π=( π
Β±π 1 , 0,0,β¦, 0) π=(Β±π 1 , π
Β±π 1 , 0,β¦, 0) W.h.p: πβπ π π =2π
Β±π( π
)
9
Separating Gaussians Two spherical unit variance Gaussians centered at π,π πΏ= πβπ π (πβΌπ(π,1),πβΌπ(π,1)) π= π
Β±π 1 , 0,0,0β¦, 0 π=(Β±π 1 ,πΏΒ±π 1 , π
Β±π 1 , 0,β¦, 0) πβπ π π = πΏ 2 +2π
Β±π π
10
Separating Gaussians Same Gaussian: πβπ π π =2π
Β±π( π
)
πβπ π π =2π
Β±π( π
) Different Gaussians: πβπ π π = πΏ 2 +2π
Β±π π
Separation requires: 2π
Β±π π
< πΏ 2 +2π
Β±π π
π π
< πΏ 2 π π
π/π < πΏ
11
Fitting Spherical Gaussian to Data
Given samples π π , π π ,β¦, π π Q: What are parameters of best fit π(π,π)? Pr π π =( π§ 1 ,β¦, π§ π
) = 2π β π
2 π β ( π 1 βπ§ 1 ) ( π 2 βπ§ 2 ) 2 +β¦+ ( π π
βπ§ π
) = 2π β π
2 π β | πβπ| Pr π π = π π , π π = π π ,β¦, π π = π π = 2π β π
π 2 π β | πβ π π | | πβ π π | β¦+| πβ π π
| π 2
12
Maximum Likelihood Estimator
PDF: 2π β π
π 2 π β | πβ π π | | πβ π π | β¦+| πβ π π
| π 2 MLE for π is π= 1 π π π + π π +β¦+ π π Take gradient w.r.t π and make it =0 π» π πβπ =2(πβπ) 2 πβ π π +2 πβ π π +β¦+2 πβ π π =0
13
MLE for Variance π=| πβ π π | 2 2 +| πβ π π | 2 2 +β¦+| πβ π π
| 2 2
π=| πβ π π | | πβ π π | β¦+| πβ π π
| 2 2 π=1/2 π 2 PDF: π βππ πβ π
π
π β π π ππ π Log(PDF): βππβπ ln πβ π
π
π β π π ππ Differentiate w.r.t. π and set derivative =0
14
MLE for Variance Log(PDF): βππβπ ln πβ π
π
π β π π 2 2 ππ
βπ+π πβ π
π
π π β π π ππ πβ π
π
π β π π ππ π¦= ππ : βπ+ π π πβ π
π
π¦ 2 π β π¦ 2 ππ πβ π
π
π β π¦ 2 ππ =βπ+ π π Γ π
2 =0 π= 1 2 π 2 β MLE(π)= π ππ
= sample standard deviation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.