Download presentation
Presentation is loading. Please wait.
Published byΓλυκερία Καψής Modified over 6 years ago
1
Ultra-Intense Lasers Based on K.W.D. Ledingham e.a., Science, 300, 1107 (2003) Roel Rozendaal
2
Overview Creating ultra-high intensity pulses Applications ~1020 W/cm2
Chirped Pulse Amplification Applications Particle Acceleration Nuclear processes Umstadter (2003)
3
Chirped Pulse Amplification
Mode-locked laser pulse Chirping h(n) I(n) Pulse lengthening (fiber) Group Velocity Dispersion Amplification Pulse shortening (prisms/gratings) Image from wikipedia.org
4
Applications Electron acceleration by laser-induced plasma
Proton beams Ion beams Photonuclear activation Nuclear isomer excitation Neutron beams
5
Plasmas: Basics High intensities: ionisation
Higher intensities: accelerated electrons Light pressure density fluctuations “Electrostatic wakefield plasma wave” Umstadter (2003)
6
Plasmas: 200 MeV e- Conventional accelerators: ~55 MV/m
Laser-Plasma based: up to TV/m Ti:Sapphire 30 fs, 3x1018 W/cm2 Malka (2002)
7
Proton beams Thin foil target “Target Normal Sheath Acceleration”
Ledingham (2005)
8
Proton beam results Up to 58 MeV protons 500 fs, 3x1020 W/cm2
Snavely (2000)
9
Proton beam isotopes 750 fs, 2x1020 W/cm2
(PET-relevant) isotope production: 11B + p 11C 18O + p 18F Ledingham (2004)
10
LLNL PetaWatt Laser Image from
11
Ion Beams Coating Proton shielding heating Up to 5 MeV / nucleon
100 MeV Fluoride (F7+) Excellent beam quality (collimation)
12
Photonuclear Activation
Thicker target: bremsstrahlung Transmutation of radioactive isotopes 99Tc, 129I, 135Cs 129I t1/2 = 15.7 million years 128I t1/2 = 25 minutes Magill (2003)
13
Nuclear Isomers Same nucleus, different energy Excitation mechanisms
10’s of keV - few MeV Excitation mechanisms Nuclear Excitation by Electronic Transition (NEET) Photo-excitation Electronic excitation Photon-induced de-excitation Energy storage: MJ - GJ/g Walker (1999) Carroll (2001)
14
Nuclear Isomers: Experiments
181mTa (+6.2 keV) creation (~1016 W/cm2) Dye-laser, 200 fs Nd:Glass laser, 1 ps 180mTa + g 180Ta + 75 keV (+ g) 180mTa t1/2 1015 year 180Ta t1/2 8 hours Bremsstrahlung from conventional accelerator (4 MV)
15
Neutron beams Neutrons from fusion (1970’s)
2H + 2H 3He + n (2.45 MeV) 3H + 2H 4He + n (14.1 MeV) Spallation: proton bombardment 11B + p 11C + n Usually heavier metals (zinc, lead) Emission of ~109 neutrons/shot possible (1020 W/cm2, 750 fs)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.