Download presentation
Presentation is loading. Please wait.
1
Cytoskeleton - Locomotion
Kohidai, Laszlo MD, PhD Med. habil., Assoc. Professor Dept. Genetics, Cell & Immunobiology, Semmelweis University Ecelctive Course / 2011
2
Main functions of cytoskeleton
Determines the shape of the cell Anchores organelles Movement of organelles Tensile strength Movement of chromosomes Polarity Motility
3
Cytoskeleton Microfilaments (actin) Microtubuli (tubulin)
Intermedier filaments Microtubule associated proteins (MAP-s) Motor proteins
4
Microfilaments Microtubuli Intermedier filaments
5
SLIDING Globular proteins Ca2+ ATP Motor proteins Fibrillar proteins
6
Microfilaments
7
Polymerization of actin
+ ATP ADP Depolymerization - cytochalasin – inh. phalloidin - stabilizer ADP ATP Pi Polymerization - slow
8
Actin - still in Prokaryots !
((Ent et al. Nature 2001,413, 39)
9
Cyclosis Transitional connections between actin and myosin
Moving cytoplasm Stationary (cortical) Actin filaments Chloroplasts Cell-wall Plasma membrane Transitional connections between actin and myosin Ca2+, temperature- and pH-dependent (Lodish, H. et al. Mol. Cell Biol. 2000, 767)
10
„Fountain” mechanism Ca2+-dep. requires ATP Mono- Poly- Lobo- podial
Filo- Reticulo- Formation of pseudopodium stress-fibrillums integrins
11
Cross-linking proteins of actin
contractile bundle a actinin – in stress fibr. gel-like network filamin - cortex „tight” parallel bundle fimbrin – in filopodium
12
Migrating keratinocyte
15 mm/sec Formation of lobopodium actin-network microtubuli
13
Regulator proteins of actin polymerisation
gCAP39 Severin Gelsolin Villin CapZ Tropomodulin - + Cofilin Severin Gelsolin
14
Actin polymerisation – acrosomal-reaction
(Lodish, H. et al. Mol. Cell Biol. 2000, 767)
15
Listeria monocytogenes
local actin polymerization speed: 10 mm/min high ability to transmit in tissues actin (Fred Soo & Julie Theriot Laboratory)
16
Model of actin nucleation
WASP = Wiscott-Aldrich syndr. prot.
17
Structure of cortical region
(Svitkina, TM, Borisy GG J. Cell Biol. 1999, 145, 1009)
18
Actin – membrane links F-Actin Myozin I. Arp2/3 Profilin - G-aktin
Integrin Filamin
19
Profilin-mechanism Tb4 = timozin b4
Proline-rich protein (Lodish, H. et al. Mol. Cell Biol. 2000, 767)
20
Filamin – Membrane link
actin
21
+ Structure of focal contact actin filament a actinin vinculin
paxillin talin integrin fibronectin
22
A plasma membrane – cortex links
Thrombocyte Muscle Epithel Spectrin tetramer Glycophorin Ankyrin ((Lux SE, 1979 Nature 281:426)
23
+ + + - - E Electromagnetic field induces the transformation
of cytoskeleton and formation of pseudopodia Adhesion plaque + + + - -
24
Myosin head Ca2+-dependent phosphorylation
and its effect on the 3D strcture ATP - ADP Pi light chain heavy chain a helix myosin I. 150 kD monomer myosin I I. 260 kD Head: - ATP-ase - motor dimer
25
Distribution of myosines in the migrating Dyctiostelium and in dividing cell
myozin I. (green) myozin II. (red) (Fukui, Y. Mol. Cell Biol 2000, 785))
26
- + Main types of interactions between the globular
and fibrillar components of cytoskeleton membrane
27
Non-treated F-actin blocked MT-blocked
28
Microtubules
29
Tubulin – still in Prokaryotes ! FtsZ Tubulin
(Margolin Laboratory, University of Texas)
30
Polymerization of tubulin
GTP GTP GTP GTP Polymerization - fast Protofilament (strait) GDP GDP GDP GDP Protofilament (curved) Depolymerization
31
Dynamics of microtubule-assembly
Nucleation Elongation - + incorporation balanced release
32
Role of g-tubulin in nucleation
(Wiease et al. Curr.Opin.Struct.Biol. 1999, 9, 250)
33
Microtubular systems in the cells - Centrosome - Cilia / flagellum
Interphase cell Dividing cell Neuron centrosome Basal body Cilla spindle axon Microtubular systems in the cells - Centrosome - Cilia / flagellum - Mitotic system - Vesicular transport
34
MTOC = Mikrotubul organizing center
g-tubulin specialized region of the cortex ((Brinkley, B.R. Encyclop. Neurosci. 1987, 665)
35
Network of microtubuli
Protofilaments ab dimer a tubulin b tubulin 24 nm Fibroblast
36
Cilia cilia flagellum Paramecium
37
A B dynein-arms nexin tubulin (13 ill. 11 protofilaments)
38
Composition of dynein-arms
ATP-independent binding ATP-dependent hydrolisis The arm moves toward the - pole
39
The role of dynein arms in beating of cilia Bending „Telescoping” Proteolysis
40
Molecules composing the cilia
more than 250 types of molecules 70% a and b tubulin dynein arms outer - 9 polypeptides - ATP-ase inner – composition varies radial spokes polypeptides
41
Microtubules of mitotic spindle and kinetochore
42
Arrangement of actin during cell-division
43
Intermedier filaments
44
Mechanical characterization of cytoskeleton components
intermedier filament i.e. vimentin microtubule = rupture deformation actin filament force
45
Role of intermedier filaments
Buffer against external mechanical stress Tissue specificity Epithel – keratin Connective tissue Muscles Neuroglia Neurones - neurofilaments Nucleus – lamines (lamina fibrosa) } vimentin
46
Structure of intermedier filamentums
(Lodish, H. et al. Mol. Cell Biol. 2000, 767)
47
Domain structures of intermedier filamentums
H2N- a helical domain -COOH keratins vimentin neurofilam. prot. nuclear prot
48
Intermedier filaments
Keratin filaments Vimentin-like filaments ! They DO NOT co-polymerise !
49
Microvilli myosin I. actin villin „terminal web”
a rigid bundle composed by actin mol.s actin + on the apical part villin is the linker molecule of actins „terminal web” = intermed.fil. + spectrin myosin I. and calmodulin anchore to the surface membrane
50
SEM structure of microvilli
actin bundle linker molecules „terminal web”
51
Intermedier filaments
Neuro-filaments – many cross-linkers Glial filaments – few cross-linkers The number of protein cross-links between the intermedier filaments varies in different tissues
52
Microtubuli associated proteins
(MAP-s)
53
Groups of MAP-s Structural MAP-s - MT-assembly - links to MF and to IF
Motor proteins - sliding on MT Enzymes, signal molecules - glycolytic enzymek - kinases Shape and polarity of the cell Membrane transports Assembly of molecules
54
Motor-proteins
55
Structure of motor-proteins
motor domain motor domain asszoc. polypeptides „stalk” Kinesin Myozin Dynein
56
Motor proteins - + kinesin dynein microtubule kinesin dynein heavy
chain light chain kinesin dynein
57
kinesin - + dynein cAMP cAMP pigment cells
58
Kinesin ADP ATP ADP ATP ADP ATP ADP ADP-Pi
59
MT-motor proteins and the transported elements
(Hirokawa, N. Science 1998, 279:519
60
Dynein – membrane relations
(Hirokawa, N. Science 1998, 279:519)
61
There are other mechanisms
over sliding …
62
Locomotion – with spasmoneme of Vorticella
63
Spasmoneme spring Contracts 40% in few msecs Velocity: 8 cm˛/sec
Negative charges Neutralization with Ca2+
64
Actin spring in sperm of horse-shoe crab Limulus polyphemus
! acrosome actin bundle The extension does not involve a myosin motor or actin polymerization The bundle is crystalline in its coiled and uncoiled states
65
Signalling mechanisms – In a nutshell –
66
Polymerization of microtubules - Significance of motor proteins
67
Ameboid movement and microtubules
68
Complex effects of focal adhesion kinase (FAK)
69
LIM domains of proteins
70
Central role of vimentin in signalling mechanisms of cytoskeleton
71
Phosphatases and cell migration
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.